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Part I 

EOSCUBE: Executive Summary 
The EOSCUBE constraint database system is designed to be a software produc- 
tivity tool for high-level specification and efficient generation of EOSDIS and other 
scientific products. These products are typically derived from large volumes of multi- 
dimenstional data which are collected via a range of scientific instruments. 

Main Objectives for Phase 1 (Proof-of-concept): 
0 To demonstrate that EOSCUBE can provide considerable savings in develop 

ment time of EOSDIS and other scientific products 

0 To demonstrate that product generation by EOSCUBE from real data sets is 
feasible. 

Ultimate Goals (beyond Phase 1): 
Productivity gain: EOSCUBE will allow Earth scientists to compactly specify data 

products concentrating on their scientific domains, while being relieved from a 
considerable programming effort. 

Interleaved and Optimized Production: EOSCUBE will provide interleaved pipelined 
evaluation of a series of inter-related products, automatically optimizing data- 
flow control, buffer management, and materialization supporting clustering and 
indexing. 

Platform Independence: EOSCUBE will support hardware/software platform in- 
dependence, so that platforms' change would only require changing a small 
number of interface methods, while leaving products generation software un- 
changed. It is planned that EOSCUBE will support a mix of underlying object 
managers, databases, mass storage systems, or just file systems in a very flexible 
way. 

Easy Integration: EOSCUBE is used from within a C++ program and allows to 
use existing C/C++ code, without the need to translate data types and formats. 

1 



Accomplishments in Phase 1: 
0 Development of the EOSCUBE proof-of-concept prototype based on the CCUBE 

constraint object-oriented database system 

0 Specifying in EOSCUBE a range of scientific products, and actually generating 

I 
19 
P 
I 

a number of them using real input data sets. 

0 Preparing reports, within this final report, on: 

- Feasibility and productivity study, which contains EOSCUBE specification 
of a number of scientific products, and test cases run on real data sets 

- Specification of EOSCUBE features and language 
- Architecture and implementation of the EOSCUBE prototype 
- Work in progress on optimizing multi-product generation workflow 
- Recommended course of action 

Main Conclusions in Phase 1: 
0 EOSCUBE has the potential for significant productivity gain in specification 

and generation of EOSDIS and other scientific products 

L 
1 
3 

0 Generation of scientific products from real data sets is feasible using the EOSCUBE 
prototype 

0 An industrial-strength EOSCUBE implementation will be necessary for deploy- 
ment and massive use of the system. 

0 The EOSCUBE language should allow incremental extensions, which are un- 
avoidable in diverse scientific domains 

1 
1 

0 The overall evaluation model should also support data-flow processing (i.e. 
pipeline evaluation), in addition to query processing. 

0 The main aspects of global optimization should deal with interleaved pipelined 
evaluation of series of inter-related products, and concentrate on optimizing 
throughput via data flow control, buffer management, and materialization s u p  
porting clustering and indexing. 
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P 
L Future Action Paths for EOSCUBE: 

We elaborate on recommended activities in Section VI. Below is a summary of main 
paths of action that will have to be carefully discussed and planned with EOSDIS. 

Research Path, including local and global optimization, spatidemporal indexing 
and clustering, and GIS constraint algebras 

Industrial-strength implementation path, including high-performance EOSCUBE 
kernel, pipeline evaluation model, ODBC and platforms support, and GIS inte- 
grat ion. 

Collaborative work with Earth scientists on a specific set of new products, and 
continued customization of EOSCUBE for them. This will also used as a lever- 
age for later massive deployment of EOSCUBE. 

Deployment of EOSCUBE to Centers and Technical Support 

3 



Part I1 

Productivity and Feasibility Study 
1 Studied Domains 
We have studied the following three domains of processing in order to selects products 
on which to exemplify EOSCUBE. We next briefly elaborate on each. 

Geolocation data processing 
This domain includes such procedures as pixel scanning algorithms, radar geometry, 
and systems of coordinates. The algorithms used in this domain primarily consist of 
sequences of vector and matrix manipulations, calculations of function values, long 
summations, and other arithmetic operations. Specifically, we studied the following 
documents in regards to this domain: 

0 MODIS Level 1A Earth Location ATBD 

0 TSDIS algorithm descriptions and equations for combined Geolocation, L1B 
VIRS and L1B TMI 

Conversion of radar measurements into geophysical quantities 
This domain directly deals with the radar measurement science. Consequently, data 
transformations used by the products are mostly large formulas involving mathemat- 
ical analysis entities such as integration over time and space, the gamma function, 
trigonometric Al transformations, limits etc. Specifically, we studied the following 
documents in regards to this domain: 

0 R.Meneghini and T.Kozu, Spaceborne Weather Radar 

0 M.Marzoug etc., ’A Class of Single- and Dual- Frequency Algorithms for Rain- 
Rate Profiling from a Spaceborne Radar. Part I’ ( TRMM ) 

0 T.Iguchi etc., ’Intercomparison of Single-Frequency Methods for Retrieving a 
Vertical Rain Profile from Airborne or Spaceborne Radar Data’ ( TRMM ) 

0 TSDIS Levels 1,2,3 data file specifications 

0 TSDIS Toolkit User’s Guide 

0 TSDIS Software Design Specifications 
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Adjustments of geophysical quantities and their aggregations 
over space and time 
This domain involves analysis of streams of measured quantities over time intervals, 
calculation of more precise values using compositions, adjustments of quantities in 
regards to other factors present during measuring, standardization of quantities, spa- 
tial aggregation and generation of grids of various resolutions. The transformations 
in this domain generally start from level 3 and go up to the data levels suitable for 
end-user presentation. 

Specifically, we studied the following documents in regards to this domain: 

0 MODIS Vegetation Index ATBD 

0 MODIS Land Cover ATBD 

0 MODIS Infrared Sea Surface Temperature Algorithm 

0 MODIS Cloud Top Properties and Cloud Phase 

We chose primarily this domain to exemplify the use of EOSCUBE. For the reasons 
of data availability, we decided to use data obtained by the Advanced Very High 
Resolution Radiometer (AVHRR), which was providec; to us by the CEOSR center at 
GMU. Next we discuss the EOSCUBE databases that was created to store AVHRR 
data, and which facilitates clustering and secondary storage random access. 

2 EOSCUBE Database of AVHRR Data 
In the following sections we demonstrate how EOSCUBE can be used to query and 
produce products from the the following geophysical parameters: vegetation index, 
cloud amount and see surface temperature. The background for calculation of these 
parameters has been obtained by studying the documents mentioned above. However, 
in this section we are not concerned with how the parameters have been computed 
from the lower-level products. Most queries in the next sections deal with performing 
computations such as: 

0 computing parameters for arbitrarily complex areas 

0 describing spatial and temporal characteristics of areas where parameter(s) sat- 
isfy a certain condition 

0 performing spatial aggregations 
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0 showing area changes over time 

A number of products (see details in the next sections) have been actually run on 
real-data sets (in the AVHRR database) and produced output. The actual data used 
to run those queries has been collected from several missions using the Advanced 
Very High Resolution Radiometer (AVHRR). Below are the references to the data 
sets descriptions: 

0 Los, S.O., C.O. Justice, C.J. Tucker, 1994. A global 1 by 1 degree NDVI 
data set for climate studies derived from the GIMMS continental NDVI data. 
International Journal of Remote Sensing, 15(17):3493-3518. 

0 Rossow, W.B., L.C. Garder, P.J. Lu and A.W. Walker, 1991. International 
Satellite Cloud Climatology Project (ISCCP) Documentation of Cloud Data. 
WMO/TD-No. 266 (revised), World Meteorological Organization, Geneva, 76 
pp. plus three appendices. Rossow, W.B., and R.A. Schiffer, 1991: ISCCP 
cloud data products. Bull. h e r .  Meteor. SOC., 72:2-20. 

0 Reynolds, R. W. and T. M. Smith, 1994. Improved global sea surface temper- 
ature analyses. J. Climate, 7:929-948. 

The database that we have constructed represent essentially a grid of cells which prw 
vide Earth spatial coverage. The grid is a three-dimensional vector with the dimen- 
sions representing latitude, longitude, and a time-point (in months) , correspondingly. 
Apart from regular C++ class methods such as constructor and destructor, the grid 
also contains the following fields and methods: 

0 Resolution is the grid’s resolution, 1 degree in our case 

0 LowLat is the latitude value corresponding to the (0,O) grid element 

0 LowLon is the longitude value corresponding to the (0,O) grid element 

0 Lat-Indlange(C3_CR.ANGE) gives the range of the latitude index that corre- 

-- 

sponds to a given rectangle 

0 Lon-Indlange (C3-CAANGE) gives the range of the longitude index that corre- 
sponds to a given rectangle 

0 Lat-Ind-Upb is the latitude index upperbound 

0 Lon-Ind-Upb is the longitude index upperbound 

6 
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Each spatial cell in the grid represents a time series (a vector ) of three parametric 
values: 

NDVI stands for vegetation index, a real number between 0.05 and 0.65. If 
the value is missing for a particular space-time point, the value of -99 is used 
instead. 

0 SST stands for see surface temperature measured in Kelvin. The value of 0 is 
used for land surfaces. 

0 CLD stands for cloud amount, a real number between 1 and 100 which has been 
computed as the average frequency of cloudy pixels. The value of -99 is used 
for missing data. 

There is also a temporal vector of SOI(Southern Oscillation Index) values. Those 
values do not depend on spatial location and are single values for each time point. 
Excerpts from the corresponding EOSCUBE declarations appear in Figure 1. The 
datasets used adhere to the following assumptions: 

Spatial Coverage is global. Data in the grid is ordered from North to South and 
from West to East beginning at 180 degrees West and 90 degrees North. Point 
(0,O) represents the grid cell centered at 89.5 N and 179.5 W. 

Spatial Resolution: The data are given in an equal-angle lat/long grid that has a 
spatial resolution of 1 X 1 degree lat/long. 

Temporal Coverage: January 1987 through December 1988 

Temporal Resolution: Monthly mean. 

In the products descriptions in the next sections, we will use the following notation: 

0 EOSCUBE database of AVHRR data will denote the input grid, a C++ variable 
Grid of the type EOSBIarth-Grid 

0 clin-area will denote a C++ variable of type C3-CLIN7 representing an arbi- 
trary polygon in CST variables Zat, Zcm 

0 dcrangearea will denote a C++ variable of type CBDCRANGE, representing a 
union of rectangles in CST variables Zat, Zon 

0 crange-area will denote a C++ variable of type CB-CAANGE, representing a 
rectangle in CST variables Zat, Zon 
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class EOS3-Cell 

public : 
//. . . 
C3,Double NDVI ; 
C3-Double CLD ; 
C3,Double SST; 
3; 

B 
L 
L 

class EOS3_Earth--Grid : public C3,VectorCC3,VectorCC3~VectorCEOS3~CELL> > > 

public : 
//. . . 
C3-Int32 Lat-Ind-Upb; 
C3-Int32 Lon-Ind-Upb; 
C3,Double Resolution; 
C3-Double Low-Lat; 
C3-Double Low-Lon; 
C3-Range-Monoid Lat-Ind-Range ( C3-C-RANGE ; 
C3,Range-Monoid Lon-Ind-Range ( CS-C-RANGE ; 
//. . . 
>; 

class County 

pub1 i c : 
//. . . 
C3-String Name ; 
C3,DC-LIN extent ; 
//. . . 
1; 
% 

Figure 1: EOSCUBE Declarations for AVHRR Grid Schema 

8 
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0 month will denote a C++ variable of type C3-Int32, which represents a time 
point, a month index ranging from 0 to 23( for the tweyear period). 

0 Result will denote a C++ variable representing the result for each select query. 
The type of the variable will be different for each product 

0 MBR stands for Minimum Bounded Rectangle 

0 SOI-time Aries is a variable of type C3-Vector<C3Double> which represents 
the SO1 temporal vector. 

The datasets were provided to us in the form of ASCII files and then imported 
into EOSCUBE with Objectstore OODB as underlying storage manager. Below is 
a sample data fragment representing cloud amount coverage for Jan 1987, extracted 
from the corresponding file: 

... 

... 
58.000 
58.000 
66.000 
66.000 
66.000 
70.000 
70.000 
73.250 
76.500 
76.500 
61.500 
61.500 
61.500 
72.500 
72.500 
72.500 
49.000 
49.000 
49.000 
79.500 
79.500 

58.000 
58.000 
66.000 
66.000 
66.000 
70.000 
70.000 
76.500 
76.500 
76.500 
61.500 
61.500 
61.500 
72.500 
72.500 
72.500 
49.000 
49.000 
49.000 
79.500 
79.500 

58.000 
58 .OW 
66.000 
66.000 
70.000 
70.000 
70.000 
76.500 
76.500 
76.500 
61.500 
61.500 
61.500 
72.500 
72.500 
72.500 
49.000 
49.000 
64.250 
79.500 
79.500 

58.000 
62.000 
66.000 
66.000 
70.000 
70.000 
70.000 
76.500 
76.500 
76.500 
61.500 
61.500 
61.500 
72.500 
72.500 
72.500 
49.000 
49.000 
79.500 
79.500 
79.500 

58.000 
66.000 
66.000 
66.000 
70.000 
70.000 
70.000 
76.500 
76.500 
76.500 
61.500 
61.500 
61.500 
72.500 
72.500 
49.000 
49.000 
49.000 
79.500 
79.500 
79.500 

58.000 
66.000 
66.000 
66.000 
70.000 
70.000 
70.000 
76.500 
76.500 
76.500 
61.500 
61.500 
67.000 
72.500 
72.500 
49.000 
49.000 
49.000 
79.500 
79.500 
79.500 

58.000 58.000 
66.000 66.000 
66.000 66.000 
66.000 66.000 
70.000 70.000 
70.000 70.000 
70.000 70.000 
76.500 76.500 
76.500 76.500 
76.500 61.500 
61.500 61.500 
61.500 61.500 
72.500 72.500 
72.500 72.500 
72.500 72.500 
49.000 49.000 
49.000 49.000 
49.000 49.000 
79.500 79.500 
79.500 79.500 
79.500 79.500 

... 
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3 Products and EOSCUBE Programs 

3.1 NDVI Computation over Arbitrary Areas 
Calculate NDVI for an arbitrarily input polygon area and a given month. 

Input 

0 EOSCUBE database of AVHRR data 

0 clin-area over which NDVI is to be computed 

0 month for which NDVI is to be computed 

output 

Result, of type C3Double, a real value representing the vegetation index for area 
at time point tp, calculated using the mean average 

Description 

An MBR for clin-area is computed, then iteration over the grid’s window corre- 
sponding to the MBR is performed using the Lat-IndJhnge and Lon-IndBange 
methods. For each cell the TV predicate checks if the cell is actually inside the area. 
Each C-RANGE is then checked on intersection with clin-&ea. The NDVI for the 
time point month is inserted into result, which is of the special averaging primitive 
monoid type. 

Sample Input 

C3,C-LIN clin-area = ( 3 * lon - l a t  >= 51 1 
&& ( l a t  - lon <= 70 1 
&& ( lon <= 65 ) 
&& ( l a t  >= 110 1; 

C3-Int32 month = 0; 

Output For The Sample Input 

See Appendix A. 
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Code 

1 

I 

EXEC COMPREH 
SELECT ( cell.NDV1 1 INTO C CS,Avg<double>) Result 

FROM (Grid. Lat-Ind-Range (area-mbr 11 AS (C3-Int32) lat-ind 
FROM (Grid. Lon-Ind-Range (area-mbr 1 AS (C3-Int32) lon-ind 

DEFINE area-mbr AS C clin-area.Get-MBR0 1 

DEFINE delta AS 1 (Grid.Resolution)/2.0 1 
DEFINE center-lat AS { Grid.Low,Lat+(Grid.Resolution)*lat,ind + delta) 
DEFINE center-lon AS { Grid.Low,Lon+(Grid.Resolution)*lon,ind + delta) 

DEFINE cell AS { GridClat-ind] Clon-indl [month] 1 
WHERE ( clin,area.TV( (lat/(center,lat), lon/(center,lon) 1 1 

WHERE ( cell .NDVI >= (C3,Double)O 1 

11 



3.2 Computing Areas with SST and Clouds Satisfying Con- 
dit ions 

Compute the spatial specifications of SST and CA data which satisfy the condition 
290K 5 SST 5 300K AND C A  2 50 

Input 

0 EOSCUBE database of AVHRR data 

0 cldlwb, sst-lwb, and sst-upb, of type C3Double 

0 month 

output 

Result, of type C3DC-RANGE am area at time point month, with sstJwb 5 SST 5 
sst-upb AND C A  2 cldJwb 

Description 

Iteration over the whole grid is performed. If the condition on SST and CLD is 
satisfied for a cell, the CRANGE corresponding to the cell is constructed and added 
to the Result; the latter is of type CSDCAANGE which represents a union of rectangles. 

Sample Input 

C3-Int32 month = 0;  
C3,Double cld-lwb = 70.0; 
C3,Double sst-lwb = 200.0; 
C3-Double sst-upb = 300.0; 

Output For The Sample Input 

See the output image in Appendix A. 
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Code 

EXEC COMPREH 
SELECT < square 3 INTO { C3-DC-RANGE > Result 
FROM < C3F,Range,Monoid<C3,Int32> (0, Grid. Lat-Ind-Upb, 1) > AS <C3,Int32> lat-in 
FROM < C3F,Range,Monoid<C3_Int32> (0, Grid. Lon-Ind-Upb, 1) ) AS <C3,Int32) lon-in 
WHERE < GridClat-indl Clon-indl [month] .CLD >= cld-lwb 1 
WHERE < GridClat-indl [lon-ind] Cmonthl .SST >= sst-lwb 3 
WHERE < GridClat-indl Clon-indl Cmonthl .SST <= sst-upb > 

DEFINE delta AS < (Grid.Resolution)/2.0 1 
DEFINE center-lat AS < Grid.Low-Lat+(Grid.Resolution)*lat-ind + delta) 
DEFINE center-lon AS < Grid. Low,Lon+ (Grid. Resolution) *lon,ind + delta) 
DEFINE square AS < (center-lat - delta <= lat <= center-lat + delta) 

&& (center-lon - delta <= lon <= center-lon + delta) 3 
* 
END COMPREH 

13 



3.3 Computing Area with SST Changes over Time 
For two given months, find the spatial area where SST has increased by sst-delta.  

Input 

0 EOSCUBE database of AVHRR data 

0 month-1 

0 month2 

0 sst-delta, of type C3Double 

output 

Result, of type C3DCMNGE , an area where the SST has increased at least by 
sst-delta from time point month-1 to time point month2 

Description 

Iteration over the whole grid is performed. If the condition on SST for the two given 
months is satisfied for a cell, the CR.ANGE corresponding to the cell is constructed 
and added to the Result; the latter is of type C3DC-RANGE which represents a union 
of rectangles. 

Sample Input 

C3-Int32 month-1 = 0; 
C3-Int32 month-2 = 1; 
C3-Double sst-delta = 1.0;  

Output For The Sample Input 

See Appendix A. 

14 
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Code 

EXEC COMPREH 
SELECT { square 3 INTO { C3-DC-RANGE 1 Result 
FROM { C3F,Range,Monoid<C3_1nt32> (0, Grid. Lat-Ind-Upb, 1) 1 AS CC3-Int32) lat-in 
FROM { C3F,Range,Monoid<C3-Int32> (0, Grid. Lon-Ind-Upb, 1) ) AS CC3-Int32) lon-in 
WHERE { Grid [lat-indl [lon-indl [month-21 . SST - 

GridClat-indl Elon-indl [month-11 . SST >= sst-delta 1 
DEFINE delta AS { (Grid.Resolution)/2.0 > 
DEFINE center-lat AS C Grid.Low,Lat+(Grid.Resolution)*lat-ind + delta) 
DEFINE center-lon AS C Grid.Low-Lon+(Grid.Resolution)*lon-ind + delta) 
DEFINE square AS { (center-lat - delta <= lat <= center-lat + delta) 

&& (center-lon - delta <= lon <= center-lon + delta) ) 
D 

END COMPREH 

15 
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3.4 Time Series of Spatial Correlation between Shifted Areas 

- Version 1 
For a selected a spatial region and a latitude/longitude shifts, (with the shifts, another 
region is defined; the two regions have the same shape and same size), compute a time 
series, that, for each month, will hold the spatial correlation (point to point) between 
SST over region 1 and NDVI over region 2. 

Input 

0 EOSCUBE database of  AVHRR data 

0 clin-area 

0 lat-shift ,  of type C3Double 

0 l onsh i f t ,  of type C3Double 

output 

Result, of type C3_Vector<C3Double> , a vector of real values representing spatid 
correlation for each month. 

Description 

The main query iterates over time first and uses a custom spatial correlation function, 
area-corr, which is implemented here 

Sample Input 

N/A 

Output For The Sample Input 

N/* 
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Code 

EXEC COMPREH 
SELECT < area-cod area, month) 1 
INTO C C3,Vector<C3,Double>) Result 
FROM C C3F,Range_Mon(O, Max-Month-1)) AS (C3-Int32) month 
;END COMPREH 

This computation uses the function area-corr, which is defined next: 

C3,Double area-corr ( C3,C-LIN area, C3-Int32 month )C 
sprod = sum-ndvi = sum-sst = sum-ndvi-sq = sum-sst-sq = 0; 

EXEC COMPREH 
PERFORM C sprod += cell.NDV1 * new,cell.SST; 

sum-ndvi += cell.NDV1; 
sum-sst += cell.SST; 
sum-ndvi-sq += cell.NDVI* cell.NDV1; 
sum-sst-sq += cell.SST* cell.SST; 

FROM C C3F,Range,Mon(Os Grid.Lat,Ind,Upb)) AS lat-ind 
FROM C C3F,Range,Mon(Os Grid.Lon-Ind-Upb)) AS lon-ind 

3 

DEFINE lat-Val AS { Grid.Low,Lat+(Grid.Resolution)*lat-ind) 
DEFINE lon-Val AS C Grid. Low-Lon+ (Grid. Resolution) *lon-ind) 

DEFINE new-lat-ind AS Oat-ind + lat,shift/Grid.Resolution) 
DEFINE new-lon-ind AS Clon-ind + lon,shift/Grid.Resolution) 
DEFINE cell AS < GridClat-indl Clon-indl honthl > 
DEFINE new-cell AS { Grid Cnew-lat,indl [new-lon,indl [month] 3 

WHERE (area.TV(lat/lat-val , lon/lon-val)) 

END COMPREH 

C3,Double n = (Grid.Lat,Ind,Upb+l) * (Grid.Lon,Ind,Upb+l) 
C3,Double ndvi-avg = sum-ndvi/n; 
C3,Double sst-avg = sum-sst/n; 
double corr = ( sprod/n - ndvi,avg*sst-avg )/  (sqrt 

( sum,ndvi,sq/n-ndv i-avg*ndv i-avg ) * s qrt 
( sum,sst,sq/n-sst-avg*sst-avg) 1 

return (corr) 
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3.5 Time Series of Spatial Correlation between Shifted Areas 
- Version 2 

This is another (number 2 ) implementation of the spatial correlation product 

Input 

0 EOSCUBE database of  AVHRR data 

0 clin-area 

0 l a t s h i f t ,  of type C3Double 

0 lonsh i f t ,  of type C3Double 

output 

Result, of type C3_Vector<C3Double> , a vector of red vdues representing spatid 
correlation for each month. 

Description 

Iteration over time goes first and materializes correlation sequences for each iteration. 
A generic correlation function, correl is implemented here. 

Sample Input 

N/A 

Output For The Sample Input 

N/A 
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Code 

EXEC COMPREH 
SELECT C correl (corr-seqs) 1 
INTO CC3-Vector<C3-Double> Result 
FROM C C3F_Range,Mon(O, Max-Month-1) > AS {C3_Int32> month 
DEFINE corr-seqs AS C area,corr,seqs(area,month) > 
J 

END COMPREH 

C3-Vector<C3,Pair<C3,Double,C3,Double>> 
area-corr-seqs ( C3,C-LIN area, C3-Int32 month 

EXEC COMPREH 
SELECT < C3,Pair<CS_Double ,CS,Double> (cell. NDVI , new-cell . SST) 
INTO ~C3,Vector<C3,Pair<C3,Double,C3,Double>>> Result 
FROM < C3F,Range,Mon(O, Grid.Lat,Ind,Upb)) AS lat-ind 
FROM < C3F,Range,Mon(O, Grid .Lon,Ind,Upb)) AS lon-ind 

DEFINE lat-val AS -( Grid.Low,Lat+(Grid.Resolution)*lat,ind> 
DEFINE lon-val AS < Grid.Low,Lon+(Grid.Resolution)*lon,ind) 
DEFINE new-lat-ind AS (lat-ind + lat,shift/Grid.Resolution) 
DEFINE new-lon-ind AS (lon-ind + lon-shift/Grid .Resolution) 
DEFINE cell AS { GridClat-indl Clon-indl [month] > 
DEFINE new-cell AS C Grid [new-lat-indl Cnew,lon,indl [month] > 

WHERE k e a  .TV(lat/lat,val, lon/lon,val)> 

J 

END COMPREH 
return Result; 
1; 

C3,Double carrel( C3,Vector<C3,Pair<C3-Double,C3,Double>> corr-seqs 
C 
xysum = xsum = ysum = x2sum = y2sum = 0; 
PERFORM Cxysum += x*y; 

xsum += x; 
ysum += y; 
x2sum += x*x; 
y2sm += y*y; 
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1 
FROM { corr-seqs) AS pair 

DEFINE x AS pair.First 
DEFINE y AS pair.Second 

END COMPREH 

C3,Double n = corr-seqs . Count 0 ; 
C3-Double xavg = xsum/n; 
C3,Double yavg = ysumh; 
double corr = (xysumln - xavg*yavg) 1 

return ( corr ) 
(sqrt (x2sum/n-xavg*xavg) *sqrt (y2sum/n-yavg*yavg) 1 
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3.6 Time Series of Spatial Correlation between Shifted Areas 
- Version 3 

Input 

EOSCUBE database o f  AVHRR data 

clin-area 

0 l a t s h i f t ,  of type C3Double 

0 l o n s h i f t ,  of type C3Double 

output 

Result, of type CS-Vector<C3Double> , a vector of real values representing spatial 
correlation for each month. 

Description 

Same as the previous product, but correlation sequences are not materialized; rather 
special monoid is used which incrementally implements correlation. 

Sample Input 

N/A 

Output For The Sample Input 

N/A 
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Code 

EXEC COMPREH 
SELECT ( area-corr(area, month) 3 
INTO (C3-Vector<C3-Double> Result 
FROM ( CSF-Range,Mon(O, Max-Month-1)) AS CC3-Int32) month 

END COMPREH 
J 

C3-Double area-corr ( C3-C-LIN area, C3-Int32 month 

EXEC COMPREH 
SELECT C C3-PaircC3-Double ,C3_Double> (cell. NDVI , new-cell . SST) 
INTO (C3_Correl<C3_Double>> Result 
FROM ( C3F_Range_Mon(O, Grid.Lat,Ind,Upb)> AS lat-ind 
FROM -( CSF,Range,Mon(O, Grid.Lon-Ind,Upb)) AS lon-ind 

DEFINE lat-Val AS ( Grid.Low,Lat+(Grid.Resolution)*lat,ind) 
DEFINE lon-Val AS { Grid. Low,Lon+ (Grid. Resolution) *lon,ind> 

DEFINE new-lat-ind AS (lat-ind + lat-shif t/Grid .Resolution) 
DEFINE new-lon-ind AS (lon-ind + lon-shif t/Grid .Resolution> 
DEFINE cell AS ( GridClat-ind] Clon-indl [month]. 1 
DEFINE new-cell AS -( Gridhew-lat-ind] [new-lon-indl [month] 1 

WHERE (area .TV(lat/lat,val, lon/lon-val)> 

s 

END COMPREH 
return Result; 
> 
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3.7 Time Series of Spatial Correlation between Shifted Areas 
- Version 4 

Input 

0 EOSCUBE database of AVHRR data 

0 clin-area 

0 lat -shi f t ,  of type C3Double 

0 l o n s h i f  t, of type C3Double 

output 

Result, of type C3_Vector<C3Double> , a vector of real values representing spatid 
correlation for each month. 

Description 

This more efficient version iterate over cells first and computes all correlation d u e s  
simultaneously 

Sample Input 

C3,C-LIN clin-area = ( 100 <= l a t  <= 110 && 50 <= lon  <= 60 );  // part of No 
C3,Double lon-shift = -60 ; // into Pacific ocean 
C3,Double lat -shi f t  = -20 ; 

Output For The Sample Input 

See Appendix A. 
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Code 

CS-Correl<double> Result [Max-Monthsl; 

EXEC COMPREH 
PERFORM 

FROM (Grid. Lat-Ind-Range (area-mbr ) 1 AS (C3-Int321 lat-ind 
PERFORM C C3M_TRACE(lat,ind) 1 
FROM (Grid.Lon-Ind-Range(area-mbr )) AS (C3-Int321 lon-ind 

DEFINE area-mbr AS < clin-area.Get-MBR0 3 

DEFINE delta AS ( (Grid.Resolution)/2.0 1 
DEFINE center-lat AS ( Grid.Low-Lat+(Grid.Resolution)*lat,ind + delta) 
DEFINE center-lon AS ( Grid.Low,Lon+ (Grid. Resolution) *lon-ind + delta) 

DEFINE new-lat-ind AS (lat-ind + lat,shift/Grid. Resolution) 
DEFINE new-lon-ind AS {lon-ind + lon-shift/Grid.Resolution> 
DEFINE cell-ts AS { GridClat-ind] Clon-indl 1 
DEFINE new-cell-ts AS { Grid [new-lat-indl [new-10x1-indl 1 

WHERE { clin-area.m( (lat/(center,lat), lon/(center-lon) 1 1 

SELECT (C3,Pair<double ,double> (cell-ts [month] . NDVI , 

INTO correl 
FROM ~C3F~Range~Monoid<C3~Int32>(0,Max,Months-1,1~~ AS (C3-Int32) month 

new-cell-ts [month] . SST) 1 

DEFINE correl AS ( Result[monthl 1 
J 

, 
END COMPREH 
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3.8 Temporal Correlation 
For time periods when SO1 < 0 (or >= 0 ) ,  compute the spatial region over which the 
temporal correlation between NDVI and SO1 is equal to or greater than a given vdue 
t c -1 wb. 

Input 

0 EOSCUBE database of AVHRR data 

0 tc lwb,  of type C3Double 

output 

Result, of type CSDCRANGE, an area where the temporal correlation between SO1 
and NDVI over the 24 months is at least tc-lwb 

Description 

straight forward 

Sample Input 

C3-Double tc-lwb = 0.6 ; 

Output For The Sample Input 

See the outpour image in Appendix A. 
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Code 

EXEC COMPREH 
SELECT C square 1 INTO C C3,DC-RANGE 1 Result 
FROM 
FROM 

L 
m 
1 
m 
P 
E 

C3F_Range_Monoid<C3_Int32> (0, Grid. Lat-Ind-Upb, 1) 1 AS (C3-Int32) lat-i: 
C3F,Range,Monoid<C3_1nt32> (0, Grid. Lon-Ind-Upb , 1) 1 AS (C3-Int321 lon-in 

DEFINE cell-ts AS { GridClat-indl [lon-ind] 1 
SELECT { C3,Pair<double,double>( cell~ts~month] .NDVI, 

INTO (C3_Correl<double>) correl 
FROM C C3F,Range_Monoid<C3_1nt32> (0, Max-Months-l , 1) 1 AS CC3-Int32) month 
WHERE { cell,ts[month] .NDVI >= 0.0 1 
WHERE C SOI,Time-SeriesCmonthl >= 0.0 3 

SOI-Time-Series [month] ) 1 

D 

WHERE C (doub1e)correl >= tc-lwb 1 
DEFINE delta AS I (Grid.Resolution)/2.O 1 
DEFINE center-lat AS Grid.Low-Lat+(Grid.Resolution)*lat-ind + delta3 
DEFINE center-lon AS C Grid .Low-Lon+ (Grid. Resolution) *lon,ind + delta) 
DEFINE square AS C (center-lat - delta <= lat <= center-lat + delta) 

&& (center-lon - delta <= lon <= center-lon + delta) 3 
J 

END COMPREH 
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3.9 Spatial Aggregation 
Produce a new grid which is N * N times more coarse for a given month. 

Input 

0 EOSCUBE database of AVHRR data 

0 N, of type C3-Int32 

0 month 

output 

Result, of type EOS3Zarth-Grid , a new coarse grid with the resolution N the input 
grid resolution( at time point month ), and NDVI values averaged for each coarse cell 
over finer cells inside it. 

Description 

Iteration over coarse cells goes first, then corresponding finer cells are visited and 
NDVI is averaged using the averaging monoid 

Sample Input 

C3Jnt32 month = 0; 
C3-Int32 N = 10; 

Output For The Sample Input 

See Appendix A. 
-- 
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Code 

EOS3-Earth-Grid New-Grid( 360/N, 180/N ; 
New-Grid .Size,Allo ; 

EXEC COMPREH 
PERFORM 
FROM { C3F_Range_Monoid<C3_Int32> (0, Grid. Lat-Ind-Upb/N, 1) 3 

FROM { C3F,Range,Monoid<C3,Int32> (0, Grid. Lon-Ind,Upb/N, 1) 3 
AS (C3-Int32) new-lat-ind 

AS (C3-Int323 new-lon-ind 
SELECT { cell.NDV1 3 
INTO {C3_Avg<double>) avg-ndvi 
FROM ( C3F-Range,Monoid<C3,Int32>(new-lat,ind*N, (new,lat-ind+l)*N-l, 1)) 

FROM { C3F,Range,Monoid<C3_1nt32> (new,lon,ind*N, (new,lon-ind+l) *N-l, 1) 3 
AS (C3-Int32) lat-ind 

AS (C3-Int323 lon-ind 
DEFINE cell AS (GridClat-indl Clon-indl [month] 3 

WHERE c cell.NDV1 >= 0.0 1 
3 

PERFORM (New-Grid [new-lat-indl [new,lon-indl [month] . NDVI = (C3,Double) avg-ndvi 
8 

END COMPREH 
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3.10 NDVI Animation Movie 
Produce a sequence of areas with NDVI at least ndvi-lwb for 24 months. 

Input 

0 EOSCUBE database of  AVHRR data 

0 ndvi-lwb, of type C3Double 

output 

Result, of type C3_Vector<C3DCLIN>, representing a collection of areas with NDVI 
equal or greater than ndvi-lwb 

Description 

Iteration over all time points is performed, then NDVIZESS(ndvi-lup) is called on 
each iteration 

Sample Input 

C3-Double ndvi-lwb = 0 .4 ;  

Output For The Sample Input 

See Appendix A + animation in the demo. 
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b Code 

% 

EXEC COMPREH 
SELECT { frame 1 
INTO (C3_Vector<C3,DC,RANGE>) Result 
FROM (C3F~Range,Monoid<C3~Int32>(0,Max,Months-1,1~3 AS (C3-Int32) month 

SELECT { square 1 INTO { C3,DC-RANGE 1 frame 
FROM { C3F-Range-Monoid<C3,Int32>(0, Grid.Lat-Ind-Upb, 1)) 

FROM { C3F,Range,Monoid<C3,Int32>(0, Grid.Lon,Ind,Upb, 113 

WHERE 1 GridClat-ind] [ion-ind] Cmonthl .NDVI >= ndvi-lwb 1 

AS (C3-Int323 lat-ind 

AS CC3-Int32) lon-ind 

DEFINE delta AS ( (Grid.Resolution)/2.0 1 
DEFINE center-lat AS < Grid.Low,Lat+(Grid.Resolution) *lat,ind + delta) 
DEFINE center-lon AS -( Grid. Low,Lon+ (Grid. Resolution) *ion-ind + delta) 
DEFINE square AS ( (center-lat - delta <= lat <= center-lat + delta) 

&& (center-lon - delta <= lon <= center-lon + d e l t a  
, 

8 

END COMPREH 
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3.11 
Compute the spatial area in which the temporal correlation between SST Anomaly 
and CA is greater than or equal to tc lwb.  

Temporal Correlation and SST Anomaly 

Input 

0 EOSCUBE database of AVHRR data 

0 t c l w b  

output 

Result of type C3DCRANGE which represents the computed area. 

Description 

Note, anomaly here is a difference between a SST value and SST 2-year average. 

Sample Input 

N/A 

Output For The Sample Input 

N/A. 
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Code 

EXEC COMPREH 
SELECT ( square 1 INTO ( C3-DC-RANGE ) Result 
FROM ( C3F_Range_Mon<Int32> (0, Grid. Lat-Ind-Upb, 1) ) AS (Int32) lat-ind 
FROM ( C3F,Range_Mon<Int32>(0, Grid.Lon,Ind,Upb,l)) AS (Int32) lon-ind E 

c1 
m 
E 

SELECT ( GridClat-ind] [lon-indl [month] .SST 3 
INTO {C3_Avg<double>) sst-avg 
FROM ( C3F_Range_Mon<Int32)=>(0, Max-Month-l , 1)) 
WHERE ( cell-tsCmonth1 .SST >= 0 1 

SELECT ( C3-Paircdouble ,double> ( cell-ts [month] . CLD, sst-anomaly 
INTO (C3_Correl<double>) correl 
FROM ( C3F_Range_Mon<Int32> (0, Max-Month-l , 1)) AS (Int32) month 
WHERE C cel1,tsCmonthl .CLD >= 0 > 
W H E R E  C cel1,tsCmonthl .SST >= 0 1 

AS (Int32) month 

J 

1 

J b DEFINE sst-anomaly AS ( Grid Clat-indl [lon-indl [month] . SST-sst-avg) 

WHERE ( (doub1e)correl >= correl-lwb ) 

b 
b 

DEFINE delta AS ( (Grid.Resolution)/2.0 1 
DEFINE center-lat AS { Grid. Low,Lat+ (Grid. Resolution) *lat,ind + delta) 
DEFINE center-lon AS { Grid. Low-Lon+ (Grid. Resolution) *lon-ind + delta) 
DEFINE square AS { (center-lat - delta <= lat <= center-lat + delta) 

&& (center-lon - delta <= lon <= center-lon + delta)) 
I 

D 

END COMPREH 
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3.12 Color World Map 
Create three spatial areas: green, yellow and red, classified by NDVI ranges, per given 
month 

Input 
e 

0 EOSCUBE database of AVHRR data 

0 month 

output 

0 green-area of type CBDCJUNGE 

0 yellow-area of type CBDCRANGE 

0 redarea of type C 3 D C M G E  

Description 

Straightforward. 

Sample Input 

N/A 

Output For The Sample Input 

N/A 

i 
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Code 

FROM ( C3F_Range_Monoid<C3,Int32>(0, Grid.Lat-Ind-Upb,l)) AS (C3-Int32) lat-in 
FROM ( C3F,Range,Monoid<C3_Int32> (0, Grid. Lon-Ind-Upb, 1) 1 AS (C3Jnt32) lon, 

C3,DC-RANGE green-area, yellow-area, red-area 

EXEC COMPREH 
SELECT square (lat-ind, lon-ind , Grid .res) 
INTO (C3-DC-RANGE) green-area 

WHERE (Grid [lat-ind] [lon-indl [month] . NDVI <= green-NDVI-bound) 3 
SELECT square(1at-ind, lon-ind, Grid.res) 
INTO (C3-DC-RANGE) yellow-area 

FROM ( C3F,Range_Monoid<C3_Int32> (0, Grid. Lon-Ind-Upb, 1)) AS (C3-Int32) 
FROM ( C3F,Range_Monoid<C3,Int32> (0, Grid. Lat-Ind-Upb, 1) 

WHERE (Grid [lat-ind] [lon-ind] [month] . NDVI >. green-NDVI-bound && 
Grid [lat-indl [ion-indl [month] . NDVI <= yellow,NDVI,bound) 

J 

SELECT square (lat-ind, lon-ind, Grid .res> 

# 

INTO (C3-DC-RANGE) red-area 
FROM ( C3F-Range,Monoid<C3-Int32>(0, Grid.Lat-Ind-Upb,l)) AS (C3-Int32) lat, 
FROM ( C3F,Range_Monoid<C3,Int32> (0, Grid. Lon-Ind-Upb, 1) ) AS (C3-Int32) lon-i 
WHERE (Grid [lat-ind] [lon-ind] [month] . NDVI > yellow-NDVI-bound) 

. -- END COMPREH 

C3-C-RANGE square (int lat-ind, int lon-ind, double res) ; 
(C3,CST-Var lat * lon ; 
return(Grid.lat,low + lat,ind*res <= lat && 

Grid.lat,low + (lat-ind + l)*res && 
Grid.lon,low + lon-ind*res <= lon && 
Grid.lon,low + (lon-ind + l)*res 

1 
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3.13 Coloring Counties based on NDVI Means 
Color USA counties by mean NDVI values 

Input 

0 EOSCUBE database of AVHRR data 

0 EOSCUBE database of USA counties 

0 month 

output 

Result of type C3_Vector<C39air<C3_String, C3_String>> to hold pairs of county 
name and the associated color, for each county. 

Description 

See the description of the USA database of counties in the EOSCUBE Language And 
Features section 

Sample Input 

N/A 

Output For The Sample Input 

N/A 
I 
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Code 

EXEC COMPREH 
SELECT { C3_Pair<CS,String, C3_String> (county .name, Color(ndvi-Val) 3 
INTO C3-Vector<C3,Pair<C3-String,C3-String>> ) Result 
FROM { all-counties 3 AS (County) county m SELECT { cell.ndvi 3 INTO { C3-Avg<double>) ndvi-Val 

DEFINE area-mbr AS { county. extent. Get-MBRO 
FROM (Grid. Lat-Ind-Range (area-mbr ) AS (C3-Int32) lat-ind 
FROM (Grid.Lon,Ind,Range(area-mbr ) AS (C3-Int323 lon-ind rn 

DEFINE delta AS (Grid.Resolution)/2.0 ) 
DEFINE center-lat AS { Grid.Low-Lat+(Grid.Resolution) *lat,ind + d e l t m  
DEFINE center-lon AS 
DEFINE square AS ( (center-lat - delta <= lat <= 

Grid.Low-Lon+(Grid.Resolution)*lon-ind + delta 

b 
m 

center-lat + delta 
&& (center-lon - delta <= lon <= center-lon + delta)) 

WHERE area.TV( lat/lat,val, lon/lon-val) 1 

WHERE { cell.NDV1 >= 0 ) 
DEFINE cell AS { GridClat-ind] [lon-indl [month] ) 

8 

END COMPREH 1 
C3,String Color ( C3,Double value 
c 
if ( (value <= 0.3 
c 
return IIgreen" ; 

I 3 
else if ( (value <= 0 . 5  ) && (value >= 0.3 1 1 
.c 
return "yellow" ; 

J 
else if ( (value >= 0.5 1 

return "red" ; 
3 
3 ;  
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3.14 Counties and NDVI Coverage 
Find the counties where areas of NDVI coverage of ndvi-lwb a,re at  least the given 
percentage of the county’s total area 

Input 

0 EOSCUBE database of AVHRR data 

0 EOSCUBE database of USA counties 

0 month 

0 ndvi-lwb 

0 percentage 

output 

Result of type CS-Vector<CSString>> to hold county names. 

Description 

straightforward 

Sample Input 

N/A 

Output For The Sample Input 

N/A 
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Code 

EXEC COMFTEH 
SELECT ( square > INTO < C3-DC-RANGE 1 
FROM ( C3F-Range-Monoid<C3,Int.32> (0, Grid. Lat-Ind-Upb, 1) 1 AS CC3-Int32) lat-in 
FROM ( C3F-Range-Monoid<C3,Int32> ( 0 ,  Grid. Lon-Ind-Upb, 1) 1 AS (C3-Int32) lon-i 
WHERE ( Grid [lat-indl [lon-indl [month-11 . NDVI >= ndvi-lwb 1 

ndvi-coverage 

DEFINE 
DEFINE 
DEFINE 
DEFINE 

J 

END COMPREH 

delta AS ( (Grid.Resolution)/2.0 1 
center-lat AS { Grid.Low,Lat+(Grid.Resolution) *lat,ind + delt 
center-lon AS { Grid .Low,Lon+(Grid .Resolution) *lon-ind + delta 
square AS 1 (center-lat - delta <= lat <= center-lat + delta 

rn 
&& (center-lon - delta <= lon <= center-lon + delta)) 

EXEC COMPREH 
SELECT ( county.Name ) 
INTO { C3_Vector<CS,String> ) Result 
FROM ( all-counties > AS (County) county 

WHERE I SQ(isec)/SQ(county.extent) >= percentage 3 

END COMPREH 

DEFINE isec AS { county.extent && ndvi-coverage 

J 
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3.15 Sort in Drop Order 
Sort the counties in the order of NDVI drop from the period of the first 12 months 
to the period of the last 12 months. 

Input 

0 EOSCUBE database of AVHRR data 

0 EOSCUBE database of USA counties 

output 

Result of type Sorted_Vector<C33tring, C3Double> to hold county names sorted 
in the drop order 

Description 

straightforward 

Output For The Sample Input 

See Appendix A. 
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Code 

R 
I) 

II 

LI 

EXEC COMPREH 
SELECT (C3_Pair<C3,String, C3_Double> (county. Name, avg-drop) > 
INTO (Sorted_Vector<C3_String, C3,Double>) Result 
FROM (all-counties) AS (County) county 

DEFINE area-mbr AS { county.extent.Get-MBRO 1 
FROM (Grid. Lat-Ind-Range (area-mbr ) AS (C3-Int32) lat-ind 
FROM (Grid. Lon-Ind-Range (area-mbr AS (C3-Int32) lon-ind 
DEFINE delta AS { (Grid.Resolution)/2.O 

DEFINE square AS { (center-lat - delta <= lat <= center-lat + delta 9 DEFINE center-lat AS { Grid .Lou,Lat+(Grid. Resolution) *lat,ind + del 
DEFINE center-lon AS ( Grid.Lou,Lon+(Grid .Resolution) *lon,ind + del 

&& (center-lon - delta <= lon <= center-lon + delta)) 
WHERE ( area.TV( lat/lat,val, lon/lon,val) > 

DEFINE cell-ts AS { GridClat-ind] Clon-indl 
SELECT ( cell-tsCmonth].NDVI - cell,ts[month+Max,Month/21.NDVI 1 
INTO {C3,Avg<C3-Double>) avg-drop 
FROM ( C3F_Range_Mon(O, Max-Month-1)) AS month 

J 

END COMPREH 

Sample Input 
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3.16 NDVI Composition Algorithm 

I 

In this section we show an EOSCUBE implementation of the Vegetation Composition 
Algorithm. The main task of the algorithm is to analyze the input stream of pixel 
measurements and to apply the corresponding VI computation method based on the 
number of well measured pixels in each composition period. The detailed description 
of the algorithm can be found in the Vegetation Index ATBD document, and we will 
not repeat it here. 

This EOSCUBE implementation of the algorithm demonstrates the following 
EOSCUBE benefits: 

0 the EOSCUBE program reads as a very well-structured high-level procedure; 
the correspondence between EOSCUBE code and the data flow diagram in the 
Vegetation Index ATBD document is very clear 

0 Using the EOSCUBE language FROM clauses and the RANGE monoid for 
iteration over the stream indices hides all details of loop creation of a traditional 
programming language, such as checking if the index is in the range or index 
increment, thus making the program more compact and readable 

0 Use of built-in COUNT, MAX, and MAXPAIR monoids allows to perform the 
operations of counting elements, finding minimums and maximums in just one 
line of code and within the model of the query language. Also each of those 
monoids incorporates pieces of the code that would othenvise require a separate 
implement ation 

We assume that the input stream is represented by a twedimensional vector 
all-pixels. The first dimension is spatial and corresponds to all pixels, the second is 
the temporal dimension with daily resolution. The type of the elements is PixelData 
which contains various input parameters required for the VI Composition Algorithm, 
such as reflectivities, angles and quality control data. The PixelData type is shown 
below: 

. -- 

class Pixel-Data c 
f loat  ro-nir ; 
f loat  ro-red; 
f loat  theta-v; 
f loat  theta-s ; 
f loat  phi-v ; 
f loat  phi-s ; 
qc qc; 

1; 
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R The following EOSCUBE product implements the main part of the VI Composi- 
tion Algorithm, following the algorithm description in the Vegetation Index ATBD 
document: 

EXEC COMPREH 
FROM ( C3F,Range-Monoid<C3,Int32> (0 ,max-pixels, 1) 3 AS (C3-Int32) pix-ind 
FROM { C3F,Range_Monoid<C3,1nt32> (0 ,rnax_days/8,1) 3 AS (C3-Int323 8-ind 

DEFINE Good-Pix-Count AS 
SELECT ( day-ind 3 INTO (Count<C3-Int32>> 
FROM ( C3F-Range-Monoid<C3-Int32> (8_ind*8, 8_ind*8+7,1> 3 AS {C3,Int32> d 
WHERE { Is-Good( all-pixels [pix-indl [day-indl 
DEFINE NDVI-value AS { 

1 

switch ( Good-Pix-Count c 
case >= 5 : BRDF(pix-ind, 8-ind) 
case <= 5 && > 0 : Max-NDVI-Angle(pix-ind, 8,ind) 
case 0 : Max-NDVI(pix-ind, 8-ind) 

1 
PERFORM Result [pix-indl [day-ind] = NDVI-value 
END COMPREH 

The programs Max-NDVIhgle (pix-ind, 8-ind) ,MaxNDVI (pix-ind, 8-ind) and BRDF (pix-i 
8-ind) are implemented as described in the Vegetation Index ATBD document and 
specify different NDVI composition methods. Below we give- an implementation for 
the Max-NDVIhgle (pix-ind ,8-ind) and MaxJJDVI (pix-ind , 8-ind) programs: 

DEFINE Max-NDVI-Angle (pix-ind, 8-ind) AS 
DEFINE ndvi-pair AS 
SELECT C3-Pair<all-pixels [pix-indl [day-indl . theta-v , 

INTO ~MINPAIR<C3~Double,C3~Double>) ndvi-pair 
FROM RANGE(8_ind*8, 8_ind*8+7) AS {C3,Int323 day-ind 
MAX( ndvi-pair . 1st , 

NDVI (all-pixels [pix-indl [day-indl > 

ndvi-pair .2nd) 
END 

DEFINE Max-NDVI (C3-int32 pix-ind, C3-int32 8-ind) AS 
SELECT NDVI (all-pixels [pix-indl [day-indl ) 
INTO {MAX<C3_Double>> Max-NDVI 
FROM RANGE(8_ind*8, 8_ind*8+7) AS CC3-Int32) day-ind 

END 
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Here MINPAIR is monoid which computes two smallest numbers in a collection and is 
capable of storing additional information corresponding to those numbers, which is a 
pair of NDVI values in this case. The NDVI function encodes the formula computing 
NDVI out from pixel data using one of the formulas described in the Vegetation Index 
ATBD document. 
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Part I11 

EOSCUBE Features and Language 
4 Introduction 
Constraints provide a flexible and uniform way to conceptually represent diverse data 
capturing spatietemporal behavior, complex modeling requirements, partial and in- 
complete information etc, and have been used in a wide variety of application do- 
mains. Constraint databases (CDBs) have recently emerged to deeply integrate data 
captured by constraints in databases. Although a relatively new realm of research, 
constraint databases have drawn much attention and increasing interest, mostly in 
aspects of expressibility and complexity, but also in algorithms and optimization. 

Constraint databases are very promising for applications requiring to support large 
heterogeneous data sets that can be uniformly captured by constraints. This includes 
(1) engineering design; (2) manufacturing and warehouse support; (3) electronic trade 
with complex objectives; (4) command and control (such as spatio-temporal data 
fusion and sensor management [ABK95] and maneuver planning [BVCSSS]); (5 )  dis- 
tribution logistics; and (6) market analysis. 

While many fundamental research questions are yet to be answered, we believe 
that the area of constraint databases became mature for a reliable research proto- 
type that could serve as a stable platform for experimentati~n with algorithms and 
optimization techniques as well as for real-life case studies of a number of promising 
application domains. We believe that building such a system is a crucial step to- 
ward proving the validity of constraint databases as a technology with a significant 
practical impact. 

Motivation and Design Goals 

Until now, most of the work on CDBs has been theoretical (see Related Work section). 
CDB researchers are being challenged by the question whether the CDB technology 
can really work on real-life, real-size, real-performance applications, or it is just an 
intellectual toy that will eventually fade away. This parallels, in a sense, to the state 
of relational databases before the first two prototypes, Ingres and System-R, were 
developed. Our view is that the viability test for the CDB technology will be the 
ability to achieve competitive performance and scalability. Therefore, algorithms, 
data structures and optimization techniques are the most critical issues. 

At the beginning of the EOSCUBE work we had two main choices regarding 
the design objectives: (1) to naively implement a high-level and purely declarative 
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constraint DB language, such as Lyr ic ,  focusing on its interface, but ignoring the 
performance and scalability, or (2) to develop an extensible infrastructure (Le. an 
intermediate, optimization-level language, in which evaluation plans can be explicitly 
expressed) suitable for developing and testing optimization techniques, algorithms 
and data structures. 

The first choice would lead to a much faster and simpler implementation, and, in 
fact, this is the way most research prototypes are implemented. The second choice, 
clearly, is considerably more work- and time-intensive, but is essential for our overall 
objectives. Of course, ideally, we would like to have both a high-level language and a 
full-scale optimizer in place, but this would not be possible without developing first 
the optimization infrastructure of (2). This direction was indeed our choice. 

The following were our main design principles: 

1. In terms of constraint domains and operators, a careful balance between ex- 
pressiveness and complexity must be achieved. It is easy to fall into a trap of 
highly expressive constraint domains for almost any imaginable types of data, 
but with absolutely impractical complexity. 

2. The language and the model should be object-oriented, since many object- 
oriented features are important for the target applications (e.g. [ABK95]). 

3. The language should be suitable for explicitly expressing highly optimized eval- 
uation plans (preserving their 1/0 time and space complexity). It must be flexi- 
ble enough to support object-oriented optimization (e.g.' ENCORE [Zdo89], 0 2  
[ea90], POSTGRES [SRHSO]), constraint database optimization (e.g. [BJM93]) 
and constraint indexing and filtering (e.g. [BW95]). 

4. The system should be extensible with respect to (constraint and other) data 
types, operators and predicates, and special data structures and algorithms. 

5. The system should allow easy interaction with an underlying programming lan- 
guage in order to be usable directly by system or application programmers 

6. Provided the previous principles are met, the language should ideally be as 
high-level and easy-to-use as possible. 

EOSCUBE Features and Architecture 
The EOSCUBE data manipulation language, Constraint Comprehension CuZcuZus is 
an integration of a constraint culcvlvs for extensible constraint domains within monoid 
comprehensions, which were suggested as an optimization-level language for object- 
oriented queries [FM95]. In the following, when no misinterpretation arises, we will 
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be using the same name EOSCUBE for both the system and the language of the 
constraint comprehension calculus. 

The data model for constraint calculus is adapted from constraint spatio-temporal 
(CST) objects [BK95], that may hold spatio-temporal constraint data, conceptually 
represented by constraints (i.e. symbolic expressions). In the current version, linear 
arithmetic constraints (i.e. inequalities and equations) over reals are implemented. 
New CST objects are constructed using logical connectives, existential quantifiers and 
variable renaming, within a mutli-typed constraint algebra.3 The constraint module 
also provides predicates such as for testing satisfiability, entailment etc, that are used 
as selecting conditions in hosting monoid comprehension queries. 

CST objects possess great modeling power and as such can serve as a uniform 
data type for conceptual representation of heterogeneous data, including spatial and 
temporal behavior, complex design requirements and partial and incomplete infor- 
mation. Moreover, the constraint calculus operating on CST is a highly q r e s s i v e  
and compact language. For example, just linear arithmetic CSTs and its calculus 
currently implemented in the system, allow description and powerful manipulation 
of a wide variety of data, including (1) 2- or 3-D geographic maps; (2) geometric 
modeling objects for CAD/CAM; (3) fields of vision of sensors; (4) 4-D (3 + 1 for 
time) trajectories of objects moving in a 3-D space, based on the movement equations; 
(5) translations of different system of coordinates; and (6) operations research type 
models such as manufacturing patterns describing interconnections between quanti- 
ties of manufactured products and resource materials. It is important to note that the 
conceptual and physical representations of CST objects are ‘orthogonal: while con- 
ceptually constraints are viewed as symbolic expressions, the physical representation 
is typically chosen to facilitate efficient storage and manipulation. 

The general framework of the EOSCUBE language is the monoid comprehensions 
language, in which CST objects serve as a special data type, and are implemented as 
a l i b r q  of interrelated C++ classes. The data model for the monoid comprehensions 
is based on the notion of monoid, which is a conceptual data type capturing uniformly 
aggregations, collections, and other types over which one can “iterate”. This includes 
(long) disjunctions and conjunctions of constraints. 

The ability to treat disjunctive and conjunctive constraints uniformly as collec- 
tions is a very important feature of EOSCUBE: it allows to express and implement 
many constraint operations through nested monoid comprehensions, i.e. in the same 
language as hosting queries. For example, the satisfiability test of a disjunction of 

‘In fact, the name EOSCUBE was originated from the shorthand C3 for Constraint Comprehen- 

‘using finite precision arithmetic 
3As explained in later sections, users can view the constraint layer as either calculus, or algebra, 

sion Calculus. 

interchangeably. 
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conjunctions of linear inequalities is expressed as a monoid comprehension query that 
iterates over the disjuncts (each being a conjunction), and tests the satisfiability of 
every conjunction (using the simplex algorithm). 

In turn, the ability to express a constraint operation as a sub-query in the hosting 
query is crucial for what we call deeply interleaved optimization: it gives the flexi- 
bility to reshuffle and interleave parts of the constraint algorithm (sub-query) with 
the hosting query. This re-shuf€ling can be done by additional global query trans- 
formations (discussed in the paper) involving approximations, indexing, re-grouping, 
pushing cheaper selections earlier, replacing sub-queries with special-purpose a l p  
rithms, and so forth. Figuratively speaking, constraint operations are not treated in 
EOSCUBE as black boxes plugged into a query, which would severely restrict opti- 
mization opportunities, but rather as white boxes with black holes. 

The EOSCUBE system architecture supports: 

1. Besides CST objects, any data structures expressible in C++. 

2. An extensible family of parameterized and possibly nested collection monoids 
currently including sets, bags, lists, as well as (long) disjunctions and conjunc- 
tions of CST objects. 

3. An extensible family of aggregation monoids such as sum, count, some and all. 

4. An extensible family of search structures implemented as parameterized monoids 
and currently including Btrees, hashing and kD-trees for multidimensional rect- 
angles. Because the search structures are implemented as monoids, they can be 
used uniformly anywhere in queries where monoids are allowed. 

5. An extensible family of special-purpose algorithms, such as the sort-join and 
the constraint join [BJM93], which are implemented as parameterized monoids. 
These special algorithms are important for performance because they cannot 
be matched, in terms of 1/0 complexity, by standard monoid comprehension 
algorithms with dynamic buffer management (although many other algorithms, 
such as the loop join and standard selections, can). Since the special algorithms 
are expressed as monoids, they can be easily plugged in monoid comprehension 
queries to replace equivalent sub-queries. 

6. Approximation-based filtering, indexing and regrouping based on internal com- 
ponents of nested collection monoids. These features are especially important 
for achieving deeply interleaved optimization in presence of constraint opera- 
tions. 
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7. Orthogonal features inherited from the commercial OODB Objectstore, includ- 
ing persistence, dynamic buffer management, transaction management, data 
integrity, crash recovery, version management, and multi-client/multi-server ar- 
chitecture. 

The functionality of the EOSCUBE system is a combination of the new EOSCUBE 
layer and Objectstore. EOSCUBE as a virtual system (1) inherits “lower” fea- 
tures of Objectstore, (2) replaces “middle” ObjectStore’s features with those of the 
EOSCUBE layer, and (3) adds “upper” features of the EOSCUBE layer. The im- 
plementation of the EOSCUBE layer, in turn, uses Objectstore and the linear pr+ 
gramming package CPLEX. We feel important to note that while EOSCUBE is a 
research prototype, we believe that it is a scalable system designed to carry out im- 
plementations of serious, massive data applications. That is partly due to the use of 
commercially available components (i.e. Objectstore and CPLEX). 

EOSCUBE, similar to Objectstore, can be better viewed as a powerful extension 
of C++ with constraint database features, rather than a full-scale DBMS, and is 
currently to be used from within a hosting C++ program. As a C++ extension, 
EOSCUBE uses the native C++ data structures and its type system. In fact, in the 
current implementation only the monoid comprehensions are precompiled, and all 
the other EOSCUBE features, including the the constraint calculus, are implemented 
as C++ libraries; hence the native C++ syntax is preserved. 

The use of the “dirty” C++ data model, as opposed to “clean” and formally d e  
fined models such as of ODMG OQL [ABD+96] or XSQL [KKS92] was our pragmatic 
choice due to the intended purpose of EOSCUBE: an intermediate optimization-level 
language, i.e. one in which an optimizer or a programmer can (explicitly) write 
highly optimized queries, using appropriate order, nesting, special operators (e.g. for 
the sort join) and built-in optimization primitives. Because of the intended use as 
an intermediate language, we prefer to regain the flexibility of and the uniformity 
with the underlying programming language, C++. We designed EOSCUBE to be 
used both for the implementation and optimization of high-level constraint object- 
oriented query languages such as Lyric or constraint extensions of OQL, and for 
directly building software systems (by application or system programmers) requiring 
extensible use of constraint database features. 

The focal point of our work is achieving the right balance between the expressive 
ness, complexity and representation usefulness [Bro] without which the practical use 
of the system would not be possible. To that end, the EOSCUBE constraint calculus 
guarantees polynomial data complexity, and, furthermore, is tightly integrated with 
the monoid comprehensions to allow deeply interleaved global optimization. 

-- 
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5 CST Objects and EOSCUBE Queries by Exam- 
ple 

In this section we informally discuss EOSCUBE queries, including CST objects, the 
constraint calculus and monoid comprehensions using an Earth image example. We 
assume, briefly, that a database stores a collection of country(or county) maps, which 
have extents (or shapes). It also stores an Earth image which is an 1x1 degree 
resolution grid of pixels. We assume that there are parameter values (like vegetation 
index, cloud amount, or see surface temperature) associated with each pixel. A 
scientist then may ask queries that output spatial and temporal descriptions of areas 
where the parameters satisfy a certain condition. Those queries can be compactly 
answered in EOSCUBE without using user implemented predicates or functions. 

5.1 Constraints, CST objects and Schema by Example 
Consider application schema for our earth image example( see Appendix B). The 
schema uses regular object-oriented features, and also what we call spatio-temporal 
constraint (CST) classes, such as CST(Zon, Zat), which means, intuitively, a constraint 
in free variables Zon and Zat. Consider also a county which is approximated by a 2D 
conjunctive constraint in the latitudelongitude linear system of coordinates Zat, Zon. 
For example, a constraint (formula) 

with the variables ranging over reals can be viewed as a set of points 

in tw*dimensional space and describes, say, the extent of a small rectangular area. 
More accurately, the constraint formula (-4 5 Zat 5 4) A (-2 5 Zon 5 2) will be 
interpreted as an infinite relation over the schema Zat,Zon, that contains all tuples 
(Zat, Zon) satisfying the constraint. 

In the EOSCUBE syntax the above formula will look as follows: 

We use && and == instead of A and =, correspondingly, to preserve the C++ style. 
Interestingly, the above constraint syntax is native in C++, which is achieved by 
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exploiting the C++ operators’ overloading mechanism. How this is done is explained 
in more detail in Section 7.3. Users can intuitively think of a constraint with d free 
variables as a (possibly) infinite relation of d-tuples, as an object in &dimensional 
space (i.e. a set of points), or as a symbolic expression, interchangeably, depending on 
the application and the context of its use. Thus, we will be referring to a constraint 
by a generic name CST (i.e. constraint spatio-temporal) object. 

5.2 EOSCUBE Queries by Example 
Consider the following EOSCUBE query, yet without CST objects, which finds a bag 
of all countries colored in red: 

SELECT c // for f i l e  cabinet 
INTO (Bag<COUNTRY*>) result 
FROM all-countries 

// result i s  a bag-collection 

AS (COUNTRY*) c // iterator: f c  iterates 
// over BAG 

WHERE c->color == “red” // predicate, i . e .  condition 

The SELECT clause is followed by a possibly interleaved list of the FROM-clause iterators 
and WHERE-clause conditions. Any order of iterators and predicates, in which variables 
are only used after they are bound is allowed. However, in general, different orders 
may lead, as we shall see, to different resulting collections. In the SELECT clause we 
may have any C++ expression, possibly using variables bounded in the iterators, or 
invoking another monoid comprehension. 

The semantics of the query is best understood, intuitively, through the follow- 
ing loop program, which is a conceptual skeleton of the actual algorithm evaluating 
monoid  comprehension^.^ 

result = empty-bag; 
FOREACH c IN (BAG) all-countries DO 

IF c->color == “red” THEN 
INSERT c I N T O  result 

Also important to note is that a query can be always written with just one FROM 
clause containing all the iterators, followed by just one WHERE clause with all the 
conditions. However, we allow any order of interleaved iterators and conditions, in 

4The real algorithm also deals with many other issues such as persistence, dynamic buffer man- 
agement, type management and interface with C++ etc. 
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order to control the evaluation 
languages such as EOSCUBE. 

! of the query, as is necessary for optimization-level 

Consider an example of an earth area where its extent in latitude and longitude 

is captured as the CST object (100 5 lat 5 110) A (50 5 lon 5 60) in free variables 
lat, lon, i.e., of class CST(lat,lon). 

area with each country, then finds VI for each intersection using the mean average, 
and produces a collection of pairs containing the computed value and the correspond- 
ing intersection scaled down by 2 on all coordinates. This query also shows that 
constraints are used in EOSCUBE queries to manipulate, as well as express boolean 
conditions on CST objects: 

coordinates is the set of points { (lm, lat)1(100 5 lat 5 110) A (50 5 lon 5 60)) which 

The following EOSCUBE query, for a given area, computes the intersection of this 

I 

i 
I 

CST area = ( 100 <= lat <= 110 && 50 <= lon <= 60 1; 
! 

I 

1 
I 

SELECT pair( avg, isec.Subst(lon/lon*0.5, lat/lat*O.5) ) 
INTO (Bag<pair>) result 
FROM all-countries AS c 
DEFINE isec AS (CST) c.extent && area 
WHERE SAT(isec1 
SELECT pix.VI INTO (AVG<real>) avg 
FROM Grid AS (PIXEL) pix 
DEFINE rect AS (pix.lat-0.5 <= lat <= pix.lat+O.5) && 

WHERE SAT(rect && isec) 
(pix.1on-0.5 <= lon <= pix.lon+0.5) 

Variable names are considered to be a part of the constraint database schema and 
are analogous to attribute names in the relational model. In constraint formulas 
the system joins variables that has the same symbolic name. Of course, there are 
situations when explicit renaming is required to achieve our goals( for example when 
making a self-join of two conjunctions). Expressions DEFINE exprl AS expr2 cause 
the replacement exprl by expr2 in the remainder of the comprehension; they are used 
simply as shortcuts. SAT stands for the satisfiability test of the constraint expression 
inside the parentheses which checks whether rect intersects isec. 

Below we describe in more detail different types of queries and their syntax. 

Create-a-result query 

EXEC COMPREH 
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cpp-type1 is a C++ type of the resuing monoid cpp-var-1, w-ich is allo- 
cated by EOSCUBE; cpp-expr-1 must yield the type of the elements of the result; 
cpp-expr2 must yield a collection monoid with element type cpp-type-2; cpp-var3 
refers to cpp-expr-3 by textual substitution and can be used in the rest of the query; 
cpp-expr-4 is any expression to be executed; cpp-expr-5 must yield boo1 or int types 
that are used as conditions; jselectsubqueryi denotes any CCUBE query that can be 
inserted into the main query; the semicolon wraps up the SELECT (sub)query 

Append-teresult query 

Same as the create-a-result query7 but the INTO clause omits the monoid type: 

EXEC COMPREH 
SELECT { cpp-expr-1 1 
INTO cpp-var-1 
FROM < cpp-expr-2 1 AS C cpp-type2 1 cpp-vu-2 
DEFINE cpp-var-3 AS C cpp-expr-3 1 
PERFORM c cpp-expr-4 1 
<select,subquery> 
WHERE { cpp-expr-5 > 

J 

END COMPREH 

The resulting variable cpp-var-1 is not created here; it is assumed to have been 
defined previously; 

Subqueries 

A subquery may be put inside another query just like another clause 
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EXEC COMPREH 
. . .  
SELECT . . . // main query 

SELECT ... // subquery 

; / / th is  semicolumn wraps the inner query 

... 

... 

... 
; / / this  semicolumn wraps the outer query 
END COMPREH 

Action queries 
An action query does not create or append the result. It just executes C++ 

statements, indicated in the PERFORM clause. Note, there is no SELECT clause 
in am action query. Action queries are typically used for modifying collections or 
printing results. 

EXEC COMPREH 
PERFORM 
FROM < cpp-expr-1 1 AS < cpp-type 1 iter-name 
PERFORM < cpp-expr-2 1 
END COMPREH 

The first PERFORM statement without parameters indicates to EOSCUBE that it 
is an action query. The second perform statement executes cpp-expr-2 for each 
iteration. 

. .  
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Part IV 

EOSCUBE Background, 
Architecture and Implementation 
6 EOSCUBE Monoids and Monoid Comprehen- 

sions 
In this section we describe the syntax, semantics and implementation of the EOSCUBE 
monoids and monoid comprehensions. The formal counterpart of the EOSCUBE 
monoid comprehensions is monoid comprehensions of [FM95], which is a restricted 
version of monoid homomorphisms [BTBNSl, BTS91, BTBW921 written using the 
syntax of monad comprehensions [Wadgo], as is done by [BLS+94]. We first review 
the formal definition of monoids and monoid comprehensions borrowing heavily from 
[FM95] and [BW95]. 

6.1 Review of Monoid Comprehensions 
BAG { c I f c  t all-countries, 

c->color == “red” } 

This is the original monoid comprehension syntax for the first EOSCUBE query 
in Subsection 5.2. Here, BAG indicates the type of the resulting collection (monoid); 
f c  to the left of I is what we SELECT; t is used to denote an iterator, i.e. the 
statement in the FROM clause; and the rest is predicates, i.e. logical conditions 
appearing anywhere in the WHERE clauses. The intuitive meaning is given by the 
nested loop program in Subsection 5.2. 

In addition to collections, we can also compute aggregation functions. For exam- 
ple, 

SUM { 1 I f c  t allf i le-cabinets ,  
fc->color == “red”, 
dr t fc->drawers, 
dr->color == “blue’ ’ } 

will count the number of f ile-cabinets in the result. 
More formally, a set of basic data types given, e.g., int, real and char, and a 

set of type constructors, e.g., set ,  list, bag. A data type is defined recursively as a 
basic data type or a constructed type T(a)  determined by the type parameter a. 

54 



. 

i 

A monoid is a triple (T,zero,merge), where T is a data type and merge is 
an associative function, of type T x T -+ T ,  with left and right identity zero. 
For example, sum = (int,O,+) is a monoid. A collection monoid is a quadruple 
(T(a) ,  zero,unit,merge), where (1) T(a)  is a constructed type determined by the 
type parameter a, (2) (T(a),zero,merge) is a monoid, and (3) uni t  is a function 
of type a + T(a).  As an example, (Zist(int), [I, f, ++), where [I is the empty list, 
f(i) = [i] for each i and ++ is the concatenation operation on lists.5 Finally, a 
primitive monoid is a quadruple (T, zero, uni t ,  merge), where (T, zero, merge) is a 
monoid and un i t  is the identity function of type T + T. Examples of primitive 
monoids include prod = (int, 1, id, *), where i d ( i )  = i for each integer. 

Intuitively, a monoid M = (T,zero,merge) is an abstract definition of a data 
type. Collection monoids capture the bulk types, and primitive monoids capture the 
basic types. Each instance of the collection type M = (T(a), zero, unit ,  merger) is 
expressed as compositions of functions zero, un i t  and merge on instances of type 
a. As an example, the monoid (list(int), 0, f, ++) given earlier defines a data type 
of the integer lists. An instance of the type is intuitively a list of integers and the 
list is expressed as a composition of functions [I, u and ++ applying on integers. For 
example, the list {1,2,3,1} can be expressed as + + (u(l), + + (u(2), + + (u(3), + + 

A monoid (T, zero, merge) is called commutative (idempotent, resp.) if func- 
tion merge is commutative (idempotent, resp.). For example, the monoid sef‘ = 
( se t (a) ,  {}, f’, U}, where f‘(i) = (i} for each instance i of type a, is a commutative 
and idempotent monoid, and bagB = (bag@), g 1, f”, O), where f”(i) = ai] for each 
instance i of type p and 0 is the additive bag union, is a commutative monoid. In- 
tuitively, less properties correspond to more structure. For example, the monoid bag 
has more structure than the monoid set because repetitions in a bag do matter (since 
it is not idempotent), whereas in a set do not (since it is idempotent). Similarly, the 
monoid list, being not commutative, has more structure then the monoid bag, which 
is commutative. For monoids M and Af, we say Af 3 M if that Af is commutative 
(idempotent, resp.) implies that M is commutative (idempotent, resp.), i.e. N has 
the same or less properties than M. This exactly corresponds to the intuitive notion 
that Af has more structure than M. It is easily seen that bug@ 5 setQ. IfN 5 M ,  
then an instance of type Af can be “translated” deterministically, by using the merge 
function of the monoid M, into an instance of the type M, but not necessarily vice 
versa. 

Queries on monoids are expressed as monoid comprehensions. A monoid compre- 
hension over the monoid M takes the form 

(u(l), U)))). 

. -- 

M { e  In,... ,rn) 

5We use [q,. . . ,on] to denote a list and {,I,. . . ,a) to denote a bag. 
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where e is an expression called the head of the comprehension, and 7-1, . . . , rn is a list 
of qualifiers, each of which is either 

0 a iterator of the form v t e', where v is a variable, and e' is an expression that 
evaluates to an instance of a collection monoid of type which is 5 M or 

0 a selection-predicate, which is an expression that evaluates to t rue  or f a l se .  

The expressions in turn can include monoid comprehensions. An important condition 
for the monoid comprehension is that for each 1 < i 5 n, each free variables (i.e., free 
variables in the expressions and predicates) appearing in ri, . . . , T, must appear as 
the variable of an iterator among rl, . . . , ri-1, and each free variables in the e must 
appear as the variable of a iterator among TI, . . . , rn. 

It is assumed that each instance of a monoid appearing as argument in a monoid 
comprehension is represented as an expression involving merge, un i t  and zero func- 
tions. For example BAG& 2,1,3} can be represented as 

merge( merge(unit(l1 ,un i t (2 ) ) ,  
merge(unit(1) ,unit(3)))  

or, since merge is associative and zero is a left (and right) identity, as 

merge( merge( merge( merge( zero, 
u n i t ( l > > ,  

uni t  (2) 1 , 
unit(l)) ,  

u n i t  (3) 1 

We will assume that every monoid instance is (conceptually) represented this way, 
and, thus, the notation N { U ~ ,  u2,. . . , a,} will denote the expression 

merge(. . . merge(merge(zero,unit(al)) ,unit(a,)), . . . ,unit(a,,>> 

Furthermore, N { } ,  and N(u1, u2,. . . , h} where n = 0 will both denote zeroN, 
i.e. the empty monoid instance. 

A monoid comprehension M over a monoid M = (T, zero, unit ,  merge)(collection 
or primitive), defines an instance of type T by first initializing r e su l t  with zeroM, 
and then invoking the procedure inser tJC(resu1t  ,M) defined recursively by the 
following reduction rules: 

implementation. 
definition here is different from, but equivalent to the original one; ours is closer to the 
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(rl) insertJC(resu1t ,M{e 1)) 

(r2) 

(r3) 

(r4) 

-+ result  := mergeM (result ,unitM ( e )  ) 
insertMC(resu1t ,M{e I false, 3) 
-+ n i l  (i.e. do nothing) 
insertJC(resu1t ,M{e I true, 3) 
-+ insertAC(resu1t ,M{e I 3) 
insertMC(result, M{e I x t n/ (a l , .  . . ,an} ,?)> 
-+ for i = 1 to n do insertJC(resu1t ,M{e I ? ) [ x / u ~ ] )  

where h/ is a collection monoid (S, zeroN, unitN, mergeN) with the condition n/ 5 
M .  Note that M{e I ?')[x/ui] denotes the replacement of x with ai in M ( e  I ?). 
Note also that the last rule is deterministic as far as the resulting monoid instance is 
concerned. 

6.2 Monoids in EOSCUBE 
To understand the minimum requirements for primitive and collection monoids, con- 
sider the recursive rules defining the result of a monoid comprehension. For the 
monoid M to appear in the result of the monoid comprehension, we only need to (1) 
use zeroM and (2) know how to perform 

result = mergeM (result ,unitM ( e ) )  

which is, in fact the insertM(result,e) operation (i.e. wk define insertM this 
way). In order for the collection monoid h/ to appear inside the comprehension, we 
only need to be able to itenzte over N(a1,. . . ,a,}, i.e. to perform the for loop. 

The representation (and implementation) of collection monoids in EOSCUBE is 
based on two C++ template classes, parameterized with the type A of collection 
elements: CollectionMonoid and Iterator: 

template < c lass  A > class CollectionMonoid 
< 
friend c lass  Iterator<A>; 
public : 

CollectionMonoidO ; // C++ constructor used as zero 
virtual void Insert( A& ) = 0; 
virtual Iterator<A>* CreateIteratorO = 0;  

private : // spec i f ic  subclasses contain 

'For a primitive monoid the name insert is probably strange; we really mean by 
insert exactly result := merge(resu1t ,unit?" (e)). For example, for primitive monoid sum 
(int, +, 0, identity), insertM (result ,5) is result :=result+ 5. 
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Figure 2: Collection Monoids in EOSCUBE 

// actual implementation 
I.; 
The class CollectionMonoid reflects the minimum requirements: it has zero, imple- 
mented as a class constructor, and Insert and CreateIterator member functions. 
An Iterator object, created by CreateIterator, has First, More and Next mem- 
ber functions which can be directly used in the C++ for-loop. Specific collection 
monoids implemented in EOSCUBE, depicted in Figure 4, are implemented each 
with two classes derived from the classes CollectionMonoid and Iterator, come 
spondingly. The collection monoids list, set, and bag are currently implemented 
using the Objectstore collections. 

As opposed to collection monoids, primitive ones only require zero and the insert 
member function, since they are not used in the query iterators. 

template< class T > class PrimitiveMonoid 
< 
public : 
PrimitiveMonoid( ); // Note: creates zero of monoid 
virtual void Insert( T& ) = 0; 
operator T 0 ; 
static T zero; 

protected: 
T value; 
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Pd-Zb M a x 6  Sum& . . .(auxil;uY w *mplates). . . 

p kF*tew ’\ \ 
............. Some All , . .( other monoids or monoid templates ). . . sllm.Int 

Figure 3: Primitive Monoids in EOSCUBE 

The extensible family of primitive monoids and monoid templates in EOSCUBE, 
depicted in Figure 5, includes Prod<T>, Maxc’D, Sum<T>, Some and All. Note, that 
the type used in Some and All is bool. These monoids work as disjunction and 
conjunction of conditions, respectively. 

6.3 
The syntax of the EOSCUBE comprehensions has been explained by examples. More 
accurately, it is of the form: 

Syntax and Semantics of EOSCUBE queries 

SELECT C++expr 
INTO [(monoid,type)l [result] 

[f rom-where-def ine-perf om-list] 
X [from-where-def ine-list] 

C++expr in the SELECT clause is an arbitrary C++ expression that evaluates to the 
type of result s elements. Note that C++expr may involve variables instantiated 
in the FROM clauses and may also contain nested monoid comprehensions. The 
first .(optional) parameter in the INTO clause specifies the type of result. If this 
argument is omitted, the system assumes that result is defined elsewhere in the 
C++ program. When the monoid comprehension is nested, result argument may 
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be omitted. The from-where-def ine-perform-list is a sequence of the FROM, 
DEFINE, PERFORM and WHERE clauses (explained earlier by examples) in any 
order. Note that any number of iterators, separated by commas, may appear in each 
FROM clause; further, any number of predicates (conditions) may appear in each 
WHERE clause. Also important is that nesting is recursively allowed anywhere in 
the monoid comprehension, provided that nested monoid comprehensions return ap- 
propriate types. For instance, collection monoid comprehensions may stand anywhere 
a collection monoid can; or, monoid comprehensions returning TRUE or FALSE may 
stand in place of any predicate. This flexibility also enables the use of special a lge  
rithms (such as for the constraint and sort join, indexing or regrouping), provided 
that they produce the appropriate types (e.g. collection monoid) as their outputs. 

The semantics of EOSCUBE monoid comprehension queries is defined by the 
corresponding formal monoid comprehension. Furthermore, the basic evaluation is 
by the nested loop algorithm with dynamic buffer management. Important, however, 
is that the nested monoid comprehension in the FROM clause does not create physical 
intermediate results, but rather supports the pipe-lining. 

7 CST Objects and Constraint Calculus 

7.1 
EOSCUBE uses the multi-typed algebra framework of [Bro], which we review here. 
As seen in the examples, the notion of CST data relies on a simple and fundamental 
duality: a constraint (formula) 4 in free variables 21,. . . , x, is interpreted as a set of 
tuples (al ,  . . . , G) over the schema 21, . . . , z, that satisfy 4; and, conversely, a finitely 
representable object in (q, . . . ,x,) space can be viewed as a constraint. That is, the 
syntax is constraints, i.e. symbolic expressions; the semantics are the corresponding, 
possibly infinite, relations. 

CST objects are represented by a sub-family of the first order logic, (i.e. with 
the logical connectors A, V, 7 and 3) and by a family of atomic constraints, such 
as linear arithmetic over reals, polynomial or dense order. CST objects are ma- 
nipulated by means of a constraint algebra, whose operators are expressed using a 
sub-family of the first-order logic, renaming of variables, and atomic (e.g. arithmetic) 
constraints. For example, if P and Q are CST objects in 21,. . . , x,, their intersection 
can be represented by P A  Q; union by P V Q; the test of containment of P in Q by 
Vxl,. . . ,Vz,(P + Q) (this is, in fact, the entailment test, ENTAIL); emptiness of 
P by 13z1,. . . ,32,P (this is, in fact the satisfiability test, SAT); disjointness of P 
and Q by 13x1,. . . ,3x,(P A Q); the projection of P on axes 21,. . . ,xi, 1 I i < n, 
by 3zi+l. . .3z,P etc. If we only use linear constraints over reals, as implemented in 

Framework for Constraint Algebra and Calculus 
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EOSCUBE, within the first-order logic we can express any linear transformation such 
as rotation, translation and stretch; check convexity, discreteness and boundness [?I; 
compute the convex hull, augment objects, change coordinate systems; etc. 

Thus, constraint objects can be manipulated by a very expressive language. More- 
over, since this language uses only a small number of operators (i.e. logical connectors 
and quantifiers), it is also very compact, as compared to using a separate operator 
for each specific type of transformation, which is typically done in extensible or spa- 
tial database systems. It is also claimed, that for linear constraints, query languages 
manipulating constraint objects are deeply optimizable, in terms of indexing and fil- 
tering (e.g. [BLLM95, KRW93, Sri92]), and constraint algebra algorithms and global 
optimization (e.g. [BJM93, GK951). 

More specifically, constraint algebras operate on a family 3 of canonical represen- 
tations of constraint expressions (objects). For constraint objects Cl, . . . , C, a first- 
order logic formula #(C17.. . , Cn) such as 3y(Cl[u1/y, q /2 ]  A . . . A C,[u,/y, v,/z]), 
where [u i /y ,  v~/z] denotes the variable replacement, defines the following constraint 
algebra operator op: (1) replace each Ci by the corresponding constraint expression, 
(2) do all variable replacements and (3) transform the resulting constraint expression 
into the required (equivalent) canonical representation in 3. Thus op can be seen as a 
function from 3 x . .  . x 3 to 3. On the other hand, the operator op has the interpre- 
tation Z(op), which is a query that maps n relations to one. Given Z(Cl), . . . ,Z(C,), 
where Z(Ci), 1 5 i 5 n, is the relational interpretation of Ci and q, . . . , xm are all 
free variables, Z(q )  computes the following relation: 

((21, . . . , G r a )  I Wl, * - - , Cn)) 
Clearly, the duality between constraints and point sets carries over to the constraint 
algebra/calculus, that is, the following commutative property holds: 

Z(qP(C1,. - - , Cn)) = Z(.P)(Wl), - * - , W n ) )  
A constraint family 3 is defined by choosing (1) an atomic constraint domain, (e.g. 

polynomial over reds or linear over integers), (2) the structure of the logical formula 
allowed (e.g. disjunction of conjunctions or existentially quantified disjunction) and 
(3) the required canonical form (e.g. whether to eliminate existential quantifiers, 
eliminate each redundant disjunct, extract all implicit equalities in conjunction or 
eliminate redundancy in conjunctions). The definition of a constraint algebra amounts 
to choosing the structure of first-order formulae and the atomic constraints allowed 
in the query. 

The challenge here (and a major area of research) is the development of constraint 
families and algebras, that strike, for each application realm, a careful balance be- 
tween (1) expressiveness, (2) computational complexity and, very importantly, (3) 
representation usefulness. 
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As one extreme, if the entire first-order logic (as studied in [?, ?I), and the same 
atomic constraints are allowed in both the constraint family 3 and the dgebra, we get 
a very expressive algebra with the Iow data complexity, since no actual manipulation 
of constraints would be required. However, the representation of the result might 
consist of a very large unsimplified constraint expression that might not be useful for 
the user. For instance, the answer to a query “is constraint object C empty” would 
be 321 . . . h n C ,  where 21, .  . . , xn are dl free variables, whereas the user expects a 
true or false answer. 

An example of a very expressive, but having high (exponential) time data com- 
plexity is the DISCO (Datalog with Integer and Set order Constrains) query language 
[BR95]. Constraint representation is DISCO is useful in many, but not all applica- 
tions. For example, to express satisfiability of a simple propositional formula, the 
user needs to encode the formula by a datdog (with constraints) program, in a fairly 
unnatural way. 

Close to the other end, the framework [?] requires a fairly restricted subfamily 
of first-order logic in constraint objects: disjunction of (unquantified) conjunctions of 
atomic constraints (the algebra, however, allows more, including quantifier elimina- 
tion). This representation is useful for many, but not all applications: for example a 
constraint representation of a triangle given by vertices (u l ,  b l ) ,  (k, b), (us, b3),  

is not directly representable in that framework. Still, for some atomic constraint 
families, such as linear inequalities over reals, this framework may be computation- 
ally unmanageable: the quantifier elimination may result in a constraint exponential 
in the size of the original conjunction, although for many subfamilies more efficient 
algorithms were developed (e.g. (GK95, JMSY92, HLL90, LL911). A more flexible 
first-order logic structure that allows the entire linear constraints over reals while 
controlling computational complexity was described in [BJM93, BK951. 

-- 

7.2 
In EOSCUBE we concentrate on linear constraint over reah, which are expressive 
and useful in a variety of application domains. However, in order to control the 
computational complexity, we design a more flexible first-order logic structure by 
constructing a number of interrelated constraint families. This continues the line of 
work in [BJM93, BK95]. 

The six interrelated constraint families in EOSCUBE are depicted in Figure 6. 
The four main families are for unrestricted linear constraints over reds: C L I N ,  for 

EOSCUBE Constraint Families and Canonical Forms 
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Figure 4: Families of CST Objects 

& ..(my) 

Conjunctive Linear, stands for constraints represented in the form Ar=lCi, where Ci 
is a linear inequality; ECLIN, for Existential Conjunctive, corresponds to the form 
%-A?=, Ci; D C L I N ,  for Disjunctions of Conjunctions, corresponds to the form VzlAAj”,l 
Cij; and DECLIN, for Disjunctions of Existential Conjunctive, corresponds to the form 
3Z VEl A:=lCij. The other two families are for range constraints, i.e. of the form 
u op x op b, where op is either < or 5 and u and b are either real numbers or -00 

or 00. Namely, C-GE, for Conjunctive Range, stands for constraints represented 
in the form Ar=lCi, where Ci is a range constraint; and DCJUNGE corresponds to the 
form Vzl  Cij- 

for 
projection. We distinguish between projections on one variable, denoted (one) ; on 
zero attributes, denoted (), i.e. all free variables are existentially quantified; on all 
variables, denoted (all+>, i.e. no variables are quantified; and, on any number of 
attributes, denoted (any), for arbitrary projection. The user is recommended to use 
the most specific projection operator in order to achieve the strongest (i.e. lowest) 
resulting types. 

We use the EOSCUBE notation for operations: not, &&, I I ,  and (. . .I 
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Not only the projections in EOSCUBE can eliminate existing free variables, but 
they can also add new ones. For example, a CST (1 <= x <= 5) can be transformed 
by the ”projection” on (x,y> into (x ,y> I (1 <= x <= 51, thus adding the new free 
variable y, and getting a new interpretation as a relation over x,y  of all tuples with 
x as required and an arbitrary real number y. However, in the classification of the 
projection cases discussed earlier, we only consider free variables physically appearing 
in the constraint expressions. 

Thick arrows indicate type hierarchy. For example, C L I N  is a sub-type of D C L I N ,  
E C L I N  and, transitively, D E C L I N ,  meaning that a CST object of type C L I N  may be 
used as an argument wherever its supertypes are allowed. 

Thin arrows indicate, for each constraint family, the allowed operations and the 
type of the result, which may belong to a different constraint family. For example, 
&& is allowed on C L I N ,  returning the result in the same family, while (), and (one) 
return the result in C N G E  (which is also in C L I N  as a supertype of C U N G E ) .  Note, 
that the result of I I on arguments from C L I N  will be in D C L I N ,  not in C L I N .  Some 
of the operations are implicit: for instance, while I I does not explicitly appear in 
C L I N ,  it can be applied since it is allowed for its supertype D C L I N .  

Operators may be overloaded: for example && in C L I N  is different from && in 
D C L I N ;  they are implemented differently and return the results of different types 
(with different representations). The actual operator applied depends on the types 
of its arguments. As an example, &&(CLIN,C_LIN)  will use the C L I N  operator; 
whereas, &&(DC_LIN,DCLIN)  , as well as & & ( C L I N , D C L I N )  Will use the operator from 
D C L I N .  In general, for the application of op(arg1 ,arg2) we use the lattice structure 
of the type hierarchy, where sub - type 5 super - type (i.e. the higher the bigger). 
The actual op chosen is the one of the CST type that is the least upper bound of 
type (argl) and type (arg2) on which op is defined. Note, that the CST families are 
constructed in such a way that, for every op used, such least upper bound, if exists, 
is unique; hence, there is no ambiguity. If no such bound exists, op is not allowed on 
argl and arg2 and would result in a compile-time error. 

For users of the EOSCUBE CST library it is easy to remember what’s allowed 
and what’s not. &&, I I , and (> c m  be freely applied on arguments of any CST family. 
Only not is restricted: it can only be applied to arguments of the type C L I N  (and 
thus its subtype CJUNGE). The system will always produce the strongest (i.e. least) 
type possible for the resulting constraint. 

In addition to the logical algebraic operators, all families have the following oper- 
ators: 

1. RENAME(CST-obj , ” x l / e l , .  . . , x N / e N ” )  where x l , .  . . , x N  are the names of 

2. SAT(CST-obj )  to check satisfiability of the argument, i.e. whether there exists 

the variables to be replaced with the variables e l , .  . . , e N .  
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an assignment of real constants into its free variables that makes it true. There 
is also MUTSAT (CST-ob j -1, CST-ob j -2) which is equivalent to SAT (CST-ob j -1 
&& CST-obj 2). 

3. TRUTH_VALUE(VarJssig,CST-obj) returns the truth value of the CST under 
the assignment VarJssign of constants into the CST-obj free variables. 

4. MINPOINT (lin-f unc , CST-ob j ) and MAXTOINT ( l i n f u n c  , CST-ob j ) where 
l i n f u n c  is a linear function with real coefficients. Returned is the assign- 
ment of constants into the variables of l i n f u n c  that maximizes it subject to 
the constraints in the CST. 

5. MIN(varname,CST-obj) and MAX(varname ,CST-obj) that return MIN and 
MAX of the first argument subject to the constraints in the second. 

Note that the MIN and MAX operators correspond to the problem of linear program- 
ming. In addition, ENTAIL(DCLIN, CLIN) operator is allowed'. 

Finally, since all the disjunctive CST objects can be considered as collections of 
disjuncts and all the conjunctive CST objects as collection of conjuncts, we make these 
CST families EOSCUBE collection monoids by implementing the required iterators 
and member functions. 

The six CST families are carefully constructed with the complexity consideration 
in mind as follows. First, all operations allowed on the families have polynomial data 
complexity. This is the reason, for example, that C L I N  is not closed under the general 
projection: transforming the result into C L I N  will require quantifier elimination and 
thus the size of the result (and, of course, time complexity) may be exponential in 
the number of variables eliminated. Whereas, ECLIN is closed under the general 
projection since the general projection in ECLIN is lazy: ECLIN allows quantifiers in 
the internal representation and hence no physical quantifier elimination is performed. 
Similar, not is allowed on conjunctive CST families, C U G E  and CLIN, but not on, 
say, D C L I N .  The reason is that transforming an expression of the form 1 V A C  or, 
of the form A V lC, into D C L I N  may result in an expression of an exponential size, 
which we would like to avoid. We discuss what operators involve computationally in 
more detail in the next subsection. 

The CST families use canonical forms, i.e. useful standard forms of constraints, 
that we adopt in EOSCUBE from [LHM89, BJM931 and review here from [BJM93]. 
For CST objects in the disjunctive families, some disjuncts might be redundant in the 
sense that omitting them results in an equivalent constraint. Clearly, a canonical form 
that eliminates such disjuncts would be desirable. However, the problem of detecting 

' 

*and, of course, for all subtypes of C l I N  and DCLIN 
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such tuples is co-NP-complete [Sri92], and so we will perform only one simplification 
of disjunctions: the deletion of inconsistent disjuncts. 

For CST objects in the conjunctive families, there are a number of simplifications 
that can be requested by the user. One choice is to write all the equations in the 
form {xi = t i  I i = 1,. . . , n} where xi’s are distinct and appear nowhere else in 
the constraint. A second choice is whether all equations which are implicit in the 
inequality constraints should be represented explicitly. (As a simple example of this, 
consider the constraints x + y 5 2, x + y 2 2.) A third is the extent to which redun- 
dancy within the inequalities should be removed. [LHM89] presents a classification 
of redundancy that suggests simple forms of redundancy removal. A fourth choice is 
whether to keep the inequalities in a different form, such as the simplex tableau form. 
In the current EOSCUBE implementation, the only simplification is the removal of 
inconsistent disjuncts in the disjunctive families; however, a range of simplifications 
on the conjunctions is presently being implemented. 

7.3 Implementation of CST families 
On the conjunctive families, the && operator simply combines its arguments and is 
constant time; (one) I C, which is a projection on a single variable, involves apply- 
ing a linear program (using the simplex algorithm of CPLEX) twice for finding the 
minimum and the maximum of the variable subject to C; 0 IC, which is eliminating 
all variables in C works as a satisfiability test, using the first phase of the simplex, as 
does the SAT predicate. 

On the disjunctive families, the I I operator is constant-time, while D1 && D2, 
where D1 = Vi=l...nCli and 0 2  = Vj=l...mC2j is more involved: 

D l A D 2 =  V C l i A  V C2j= V (CliAC2j) 
i=l, ... ,n i=l ... m i=l ... n j = l  ... m 

that is, the result consists of all combinations of Cli and C2j that are mutually 
consistent (Le. their conjunction is satisfiable). Since the CST families are monoids, 
D1 && D2 is implemented as the following EOSCUBE query: 

SELECT *c l  && *c2 
INTO (DEC-LIN) conj,Dl,and,D2 
FROM D l  AS {EC,LIN*) c l ,  

D2 AS CEC,LIN*) c2 
WHERE SAT(*cl ,*c2) 

We show how such queries are optimized using the approximation-based filtering, 
indexing and regroupings in the next section. Similar, SAT(D) , where D is of the type 
DECLIN (as well as other disjunctive families) is represented as 
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SELECT SAT(*c) 
INTO (Some) satisf-flag 
FROM D AS (EC-LIN*) c 

Note, that c is of the type E C L I N  and so SAT in the WHERE clause works on 
conjunctions. Further recall that Some is a primitive monoid whose merge operator is 
a logical or; thus, the satisf-f l ag  will be true if and only if at least one component 
is true. Finally, ENTAIL(D, C) , where D is D C L I N  and C is C L I N ,  is represented as 

SELECT ENTAIL(*c,C) 
INTO (Some) imply-f l ag  
FROM D AS (C,LIN*) c 

Beyond the algorithms for constraint operations discussed, there are two subtle design 
problems that we address in EOSCUBE: compile-time maintenance of the type lattice 
and a lazy evaluation. Support for the lazy evaluation of constraint (i.e. involving 
CST) expressions is necessary for efficiency. For example, if we are interested in 
the SAT test of an expression involving logical connectors, it is typically wasteful to 
perform simplifications of subexpressions. 

To exemplify the problem arising from the type lattice maintenance, consider the 
&& operator. In fact, while && has one conceptual meaning, it works differently in every 
CST family. Moreover, since && is defined on DECLIN, the arguments may be any 
subtypes of DECLIN. Thus, every ordered pair of (sub) types for arguments of && works 
uniquely: we need to find the least upper bound type, to perform corresponding type 
conversions, and then to apply the physical algorithm of the resulting CST family. 
One possibility is implementing a separate function for each pair of subtypes, but 
this would result in a quadratic number of functions for each logical operator: 30 for 
the six families, and impractically many for future extensions of EOSCUBE with new 
CST families. On the other hand, the direct implementation of a subtype relationship 
using the C++ inheritance mechanism does not work, since each family has its own 
implementation, data-structures etc, which should not be inherited by its subclasses. 
Of course, there is also a possibility of maintaining just one global CST type, and to 
distinguish individual subfamilies only at run time. This, however, would eliminate 
the capability of the compile-time type checking, an important feature of EOSCUBE. 

To solve the type lattice problem we designed a two-layer architecture for the 
CST families: the lower layer, called basic-CST, supports the physical representation 
and manipulation of the CST families; the upper layer, called lazy-typed-CST, is 
responsible for the type lattice management and the lazy evaluation, while the actual 
evaluation is passed to the lower, basic-CST layer. 

The basic-CST layer is composed of the six classes basic-CLIN, basicDCLIN 
etc., each maintaining its own data structures to represent the underlying constraints; 
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and one super (base) class, basic-CST. No automatic type casts are supported on this 
layer. However, each basic family has member functions for explicit type conversions 
into basic types that are higher in the type hierarchy. For example, transforming 
basic-CLIN into basicDCLIN creates a basicDCLIN object (disjunction) that has 
a single disjunct in it. 

The lazy-typed-CST layer, on the other hand, does support automatic sub-typing 
and the ability to determine the least upper bounds of operators’ arguments at 
compile-time. The six families lazy-typed-CLIN, lazy-typedDCLIN etc., are imple 
mented as six classes with a class hierarchy that exactly matches the type hierarchy of 
the CST families. However, all the lazy-typed classes have similar internal represen- 
tation, which is inherited from the abstract class lazy-typedXST. The representation 
is basically an expression tree (hence “lazy”), with internal nodes storing the con- 
straint operators (such as && or I I) and encoding the strongest type to which the 
subtree can be converted; the leaves are objects of the lower layer, basic-CST. It 
is important to emphasize that the CST type checking we do in EOSCUBE heav- 
ily uses capabilities of C++ and would be impossible (at compile-time without any 
precompiling) in languages such as C. 

The EOSCUBE system also supports two generic parameterized CST families: 
Gen-Conj<T> for generic conjunctions and GenDis j <T> for generic disjunctions, where 
T is an arbitrary, possibly complex, CST type. Both are collection monoids and sup 
port the TRUTH-VALUE function; further, SAT is supported by GenDis j<T> provided it 
is supported by T. Also ENTAIL(GenDisj<T>,T) is defined provided it is defined on 
T. These operations are represented again with monoid comprehension queries. For 
example, SAT(D), where D is of the type GenDisj<T>, is represented as 

SELECT SAT(c) 
INTO (Some) satisf-flag 
FROM D AS (TI c 

Finally, we explain how the native C++ syntax is preserved in constraint formulas, 
such as in 2 <= z <= 5 && x + z <= 7. The logical connective && is supported 
by the C Z I N  class. In turn, each of the C++ expressions 2 <= z <= 5 and x + 
z <= 7 must yield an object of type C L I N .  This is done by overloading operators 
<= and +. Clearly, in such an expression, x and z must be C++ variables that have 
already been declared within an appropriate C++ scope (the usual C++ scoping rules 
apply). The type for the C++ variables x and z is a special class, called CST-Var, 
which keeps inside the a constraint variable name, i.e. a string. It is convenient, 
although not required, to use the same name for a constraint variable name and the 
corresponding C++ variable into which the constraint variable is assigned. Each 
CST object keeps inside its free constraint variables that can be also shared among 
different CST objects. 
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8 Optimization by Approximation-based Filtering 
and Indexing 

General optimization of object-oriented queries (e.g. ENCORE [Zdo89], 0 2  [ea90], 
POSTGRESS [SRHSO]) and monoid comprehensions in particular, (e.g. [FM95]), as 
well as optimization in presence of expensive predicates [CS93, HS931 is outside the 
scope of this paper; We concentrate here on approximation-based filtering, regrouping 
and indexing [BW95], that EOSCUBE is designed to support. More specifically, 
we describe, mostly by examples, the EOSCUBE primitives for upprozimution and 
inverse groupings [BW95] and indices and special purpose algorithms. 

To understand the idea, we use a modification of an example from [BW95] of the 
query: “find all trajectories passing over the Fairfax county”. It will be assumed here 
that a set of 4D aircraft trajectories as well as a map is stored in the database. A 
trajectory is assumed to have a piecewise linear representation, i.e. it is represented 
as a D C L I N  CST object 

Where x, y, z are variables for a location, t is a time variable, and ti-1, ai,1, bi,l, 
bi,2, ~ i , 3 ,  bi,3, 1 5 i 5 n, are constants. Note that for each i, (ti-1 5 t < ti A z = 
ai,lt + bi,l A y = ai,2t + bi,2 A z = ai,$ + bi,3)} describe the movement equations for 
the time interval [ti-l, ti), for the constant 3-D velocity vector (%,I, ~ i , 2 ,  %,3), starting 
from the point (bi,l, b i , ~ ,  bi,3). All-trajectories is a variable of type SET<DC_LIN*>, 
i.e. a set of pointers to trajectories. The Fairfax county is assumed to be represented 
as a polygon: i.e. as a C L I N  CST object Fairfax-area in variables x and y. The 
query can be directly expressed in EOSCUBE as -- 

SELECT traj  
INTO (Set<DC,LIN*>) result 
FROM All-Trajectories AS (DC,LIN*) traj  
WHERE MUT,SAT(*traj, Fairfax-area // Note: MUT-SAT 

// on DC-LIN 

or, if MUTSAT is expressed, in turn, as a monoid comprehension: 
1 

SELECT traj  
INTO (Set<DEC,LIN*>) result 
FROM All-Trajectories AS (DC,LIN*) traj  

fact, it is not convex, but we’ll assume that to simplify the example 
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Trajectories XY-Segments Rectangles 

Figure 5: Inverse and Approximation Grouping 

WHERE SELECT MUT,SAT(*segment ,Fairfaxarea) 
INTO {Some) // on C-LIN 
FROM *traj AS {C,LIN*) segment 

// Note: MUT-SAT 

// SELECT returns 
// True of False 

which is an expensive query if evaluated directly. 

Inverse Grouping(1G) 
To optimize the last query, we can first use the inverse grouping, described graphically 
in Figure 7. Intuitively, each trajectory can be viewed as composed of 4D-segments, 
and each segment has a projection, say an xy-segment on the horizontal plane x,y. 

Now, consider a collection of all xy-segments that originate from all the tra- 
jectories. The inverse grouping primitive tracks back, for each xy-segment in the 
collection, the set of all the trajectories from which this xy-segment came. 

The correspondence between an xy-segment and the set of trajectories is c a p  
tured through a parameterized C++ class GPaircTl ,T2> which represents a pair 
containing a reference to an object of type T1 ( C L I N *  in our case ) as its first 
element and a reference to a set of objects of type T2 (DCLIN* in our case) as its 
second element. The inverse grouping is captured through a special C++ class which 
essentially represents a set of GYair-s. To create an inverse grouping the user must 
create an instance of that class, passing the original collection as a constructor pa- 
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rameter. Assuming that All-Traj-IG has been created as the inverse grouping for 
the All-Traj collection, we can now rewrite the previous query as follows: 

SELECT traj 
INTO (Set<DC-LIN*>) result 
FROM All-Traj-IG AS <G-Pair<C,LIN*,DC,LIN*>*) G-pair 
// 
DEFINE xy-segment AS CC,LIN*) G-pair->first 
WHERE MUT,SAT( *xy,segment, Fairfax-area ) 

DEFINE trajectories-of-xy-segment 

FROM *trajectories-of-xy-segment AS (DC-LIN*) traj 

// Note: MUT-SAT 
// on C-LIN 

AS (Set<DC,LIN*>*) G-pair->second 

First note that the new query is equivalent to the previous one. The reason is 
that a trajectory passes over the Fairf ax-area if and only if one of its xy-segment 
intersects the Fairfax-area. The new query, however, is likely to perform better. 
Note that different trajectories may “share” the same xy-segment, for example if one 
passes exactly above another. Therefore, the previous query will apply the MUTSAT 
(i.e. intersection) test multiple times for every shared xy-segment. Whereas, in the 
last query we eliminate such duplication by checking MUTSAT for each xy-segment 
only once and then quickly retrieving the corresponding trajectories using the inverse 
grouping. 

Approximation Grouping(AG) 
Even though we have .minimized the number of the MUTSAT checks, we know that 
MUTSAT on CLIN is relatively expensive. To optimize further, we can approximate 
each xy-segment with a minimum bounded box (MBOX), which is of type CJUNGE. 
Then, before testing MUTSAT on CLIN it can be tested first on MBOXes, which is 
cheaper. Also, it opens opportunities for indexing. This is the purpose of the up- 
proximution grouping primitive, which we introduce next. Intuitively, approximation 
grouping takes a collection of objects and creates another collection. The elements of 
the latter are approximations of the objects from the original one (see dashed lines in 
Figure 7 ). The approximation grouping, similar to the inverse one, must track back, 
for each approximation, the set of original objects that yield this approximation. 

The implementation of the approximation grouping is similar to that of inverse 
grouping. It uses the same class CSaircTl, T2> which now represents the relation- 
ship between an approximation and the corresponding objects. The approximation 
grouping is constructed by creating an object of a special class, passing the original 
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collection and the approximation method as constructor parameters. As in the case of 
inverse grouping, the object being created represents a set of GYair-s. To continue 
the optimization of the last query the original collection in our case would be the 
inverse grouping collection All-Traj-IG. Recall that All-Traj-IG is a set of inverse 
grouping pairs GYair<C-LIN* ,DC_LIN*>. If we define an approximation of an inverse 
grouping pair as an approximation of its first element (i.e. xy-segment ) then we 
can create an approximation grouping object All-Traj-IGAG which would be a set 
of GPair<CRANGE*, GSair<C_LIN* , DC_LIN*>*>-s. 

We can now rewrite the last query as follows: 

SELECT traj 
INTO (Set<DC,LIN*>) result 
// 
FROM A11,Traj -1G-AG AS (G\-Pair<C,RANGE*, G\,Pair<C\,LIN*, 

DC\-LIN*>*>) AG-pair 
DEFINE min-box-of ,xy,segment AS {C-RANGE*) AG-pair->f irst 
WHERE MUT,SAT(*min-box,of -xy-segment // On C-RANGE; 

min-box-of -Fairf ax) // precomputed outside 
// of the query 

DEFINE Candidate-Traj ,IG AS CSet<G,Pair<C,LIN* DC-LIN*>*>*) 

// 
AG-pair->second 

FROM *Candidate,Traj ,IG AS (G-Pair<C-LIN* ,DC-kIN*>*) IG-pair 
DEFINE xy-segment AS {C,LIN*) IG-pair->first 
WHERE Mut-Sat ( *xy,segment , Fairf ax-area 

DEFINE trajectories-of-xy-segment 

FROM *trajectories,of,xy,segment AS traj 

// Note: MUT-SAT 
// on C-LIN 

AS {Set<DC,LIN*>*) IG-pair->second 

Indexed Approximation Grouping(1AG) 
The last query involves the retrieval of rectangles that are mutually consistent with a 
given one. Another optimization possibility is to maintain an index on the collection 
of rectangles. This is done using the indexed approximation grouping, instead of the 
approximation grouping. The IAG has the same functionality as the approximation 
grouping with the following differences: 1) the first element of an IAG pair is always 
a rectangle (i.e. of type C M G E  ) and 2) there is a kD-tree index imposed on the 
rectangles. The IAG is constructed by creating an object of a special class which, in 
addition to the approximation grouping functionality, contains member functions for 
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search. In our example we create an indexed approximation grouping object named 
All-Traj-IC-IAG . As in the case of approximation grouping, All-Traj-IG-IAG is 
a set of GPair<CR.ANGE* ,GPair<CLIN* ,DCLIN*>*>-s. In the query we invoke the 
MUTSAT(C_RANGE) method on that object. The method returns, for each MBOX (of 
type ClANGE), the set of all GSairCC_LIN* ,DC_LIN>*-s for which the corresponding 
rectangles intersect that MBOX. 

Note, that the returned set is not a physical set collection, but rather a structure 
allowing to iterate over its elements (and thus no intermediate evaluation is neces- 
sary when used within monoid comprehension). The last query can be rewritten as 
follows: 

SELECT traj 
INTO (Set<DC,LIN*>) result 
// 
FROM A11,Traj ,IG,IAG . MUT-SAT (min-box-of ,Fairfax) 
// 
FROM . *Candidate,Traj,IG AS (G,Pair<C,LIN*,DC,LIN*>*) IC-pair 
DEFINE xy-segment AS (C,LIN*) IG-pair->first 
WHERE Mut,Sat( *xy,segment, Fairfax 

// 
DEFINE trajectories-of-xy-segment AS (Set<DC,LIN*>*) IG-pair->second 
FROM *trajectories,of,xy,segment AS traj 

AS CSet<G,Pair<C,LIN* ,DC,LIN*>*>*) Candidate-Traj ,IC 

// Note: MUT-SAT 
// on C-LIN 

It is important to note, that, while we intuitively explained the use of the IG, AG 
and LAG by examples, these primitives can be applied to any CollectionMonoid<A>. 
For the IG the user needs to provide a transformation producing, for each element 
of type A an instance of (another) commutative and idempotent monoid (see [BW95] 
for details). For the AG and IAG, an approximation of elements of type A must be 
provided by the user. The IG, AG and IAG are used to facilitate the query trans- 
formation rules supporting approximation-based filtering (by using less expensive 
predicates first) and indexing (see [BW95]). 

9 Related Work 
No technology for declarative and efficient querying of databases involving constraint 
objects exists today. Applications of the kind discussed are typically implemented 
by special purpose programs; while these programs may use database and constraint 
programming tools, they typically require a considerable programming effort and 
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are not flexible to changes. In addition, they do not perform overall optimization 
that interleaves database, mathematical programming and computational geometry 
manipulation techniques. Existing DBMS do not manage constraints as persistently 
stored data lo. Constraint Logic Programming [?, ?, ?], on the other hand, was not 
designed to deal with large amounts of persistent data. Extensions of DBMS with 
spatio-temporal operators [OM88, Gut89, Wo189, HC91] typically (1) are limited to 
low (two- or, at most three-) dimensional space, (2) have query languages restricted 
to predefined spatio-temporal operators, and (3) lack global economical filtering and 
deep optimization. 

There has been work on the use of constraints in databases, earlier of which 
include [Klu88, ?, ?, ?, BS89]. The pioneering work [?] proposed a framework for in- 
tegrating abstract constraints into database query languages by providing a number 
of design principles, and studied, mostly in terms of expressiveness and complex- 
ity, a number of specific instances. The work [HHLvEBSS] considered polynomial 
equality constraints, adopting local propagation steps for reasoning on constraints. 
A restricted form of linear constraints, called linear repeating points, was used to 
model infinite sequences of time points [KSWSO, ?, NS921. More recent works on 
deductive databases [MFPRSO, SR92, KS92, LS92] considered the manipulation and 
repositioning of constraints for optimizing recursion. Algorithms for constraint alge- 
bra operators such as constraint joins, and generic global optimization were studied 
in [BJM93], and constraint approximation-based optimization in [BW95]. The work 
[KRW93] proposed an efficient data structure for secondary storage suitable for in- 
dexing constraints, that achieves not only the optimal space and time complexity as 
priority search trees [McC85], but also full clustering. The work [BLLM95] proposed 
an approach to achieve the optimal quality of constraint and spatial filtering. A num- 
ber of works consider special constraint domains: integer order constraints [?I; set 
constraints [Rev95]; dense-order constraints [?I. Linear constraints over reals drew 
special attention [ABK95, ?, BJM93, BK95, BLLM95, ?, ?]. The use of constraints 
in spatial database queries was addressed in [?I. The work [SRR94] used constraints 
to describe incomplete information. Constraint aggregation was studied in [Kup93]. 

DISCO (Datalog with Integer and Set order Constraints) is a constraint database 
system being developed at the university of Nebraska [BR95]. DISCO incorporates 
a highly expressive family of constraints. However, its query language has time com- 
plexity exponential in the size of a database; hence DISCO’S applicability to real-size 
database problems is not clear. Further, DISCO does not support the standard 
database features such as persistent storage, transaction management and data in- 
tegrity. 

the data must satisfy. 
‘ONote, integrity constraints used in conventional databases are not data, but rather something 
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10 Lessons Learned 
We first summarize some lessons we learned while building the EOSCUBE system. 

The twdayer implementation of the constraint algebra was a simple and ex- 
tensible solution to the problem of finding the appropriate C++ structures. The 
experiences learned while implementing the algebra can be applied to the C++ im- 
plementation of other similar multi-typed algebras. 

Using Objectstore and CPLEX as underlying components allowed us to concen- 
trate on issues related to constraint implementation and to ignore many common 
aspects such as the simplex algorithm, persistence, data integrity etc. 

However, in the process of development many problems came up while coding 
and maintaining some Objectstore-specific parts. The goal was to put the library 
on a higher level, making it more flexible and uniform to use. Also, we did not 
want to tie the library design to the specific components used underneath. Rather, 
we aimed to make it portable enough to be easily transfered on the top of another 
object manager and/or LP package. This has been achieved by implementing an 
intermediate interface between EOSCUBE and the underlying components, which 
isolated the developers and users of the system from Objectstore technicalities. In 
order to use a different object manager/LP package, only a relatively small part of 
the code will have to be rewritten. A lot of effort has gone in making this interface 
both portable and easy to use. 

Still, a fair amount of time has been spent on the implementation of the supporting 
structures such as search trees and sparse matrices. Even though there are some C++ 
packages that handle these issues, none of them was flexible enough to be directly 
plugged in EOSCUBE. 

Currently EOSCUBE does not parse the full C++ grammar. Instead, there is a 
precompiler that passes its output over to the C++ compiler. EOSCUBE queries 
are embedded in hosting C++ programs and are allowed to use variables declared in 
the appropriate scope (with some restrictions). During the implementation of this 
scheme we encountered some non-trivial technical problems that required much effort 
to resolve. 

It is important to note that C++ was the best pragmatic choice for our purposes. 
Its compactness and expressiveness power enabled us to make things that would be 
hardly possible in any other programming language. The library extensively uses tem- 
plates, operator overloading and multiple inheritance. Those features also provided 
higher reusability of components which allowed us to reduce the total amount of the 
source code (around 11,000 lines now, not including the commercial components ). 

Even though the query language we presented is an optimization-level language 
in which evaluation plans can be explicitly expressed, we found that the optimiza- 
tion primitives are not currently automated to the extent they can possibly be. For 
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example, similar to a regular index, the grouping primitives require dynamic main- 
tenance. If there is an update in the original collection, the corresponding change 
must be made in the grouping structures. EOSCUBE does not support the dynamic 
updates in the current implementation. The work in this direction is currently being 
performed. 

We have described the work on the development of the first constraint object- 
oriented database system. Our work aims at the developing a practical and useful 
technology for a wide variety of important application realms, for which no existing 
technology is applicable. For example, EOSCUBE can be directly used to implement 
the real-life data fusion and sensor management system for air-space command and 
control [ABK95]. EOSCUBE is a deeply optimizable and extensible system, striking 
the balance between expressiveness and computational complexity. 

Many research questions remain open (see [Bro] for an overview): in constraint 
modeling and canonical forms, data models and query languages, indexing and approximation- 
based filtering, and, most importantly, special constraint algebra algorithms for spe- 
cific domains and global optimization. 

P 

P 
I 
D 

& 

76 



I '  
1 
1 
t 
E 
i 
t: 
1 

Part v 
Global Optimization using 
Workflows: Work in Progress 
11 Workflow Systems 
A workflow is a collection of cooperating, coordinated activities designed to carry out 
a well-defined complex process. In the context of EOSCUBE, the activities considered 
are computation of interrelated EOSDIS and other scientific products. 

A number of workflow representation frameworks has been proposed, the most 
common being control flow graphs, triggers (also known as event-condition-action 
rules) and temporal constraints. 

Figure 6: Control Flow Graphs 

To exemplify a control-flow graph, consider an abstract example depicted in the 
graph in Figure 1. The example depicts achieving a global task (e.g., generating a 
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set EOSDIS products for the sattellite data of 24 hours) using activities E l  through 
E12 (e.g., involving generating various levels of EOSDIS products, and possibly some 
auxiliary intermediate results) going through the starting state A to the final state 
K. 

The graph indicates that activity E l  must precede all other activities, leading to 
reaching states B and C, both of which must be pursued to reach the final state K 
(the completion of the house construction). There are two alternatives to reach state 
J from state B: through D and H or through E. The first possibility must involve 
activities E2, E6, and E7, in this order; the second possibility must involve activity 
E8 which must be preceded by the activity E3. Similarly, there are two ways to reach 
node K from node C. 

Today, EOSDIS products do not have this choice of more than one way of comput- 
ing. However, as many variants for spatial correlation exemplify, in order to compute 
a series of products, a number of generation programs can be implemented (espe- 
cially if it only requires little effort). For example, instead of directly computing a 
product from its inputs (lower-level products), those inputs can be preprocessed into 
a database that will have auxiliary data structures and features (e.g., indexing and 
clustering) and then more efficient evaluation strategies can be chosen. Such strategy 
may well pay off if a many products are used the preprocessed data, thus amortizing 
the preprocessing effort. Or, one can consider a strategy when a number of products 
are evaluated “on the fly’, in parallel, when input streams are used in more then one 
computation. That is, when a block is retrieved from secondary or tertiary storage, 
or produced by a product program, it is used in as many pikes as possible, while it 
still reside in main memory. Advantages of each choice depend on the overall data 
and system state. Workflow optimization is a natural way to make optimal choices 
dynamically depending on the system state. 

The control flow graph is most appropriate for depicting the local execution de- 
pendencies of the activities in a workflow; it is a good way to visualize the overflow of 
control. Control flow graphs are the primary specification means in most commercial 
implementations of workflow management systems. As seen in the above example, 
a typical graph specifies the initial and the final activity (or a state) in a workflow, 
the successor activities for each activity in the graph, and whether these successors 
must all be executed concurrently, or it suffices to execute just one branch non- 
deterministically. Intuitively, concurrent execution corresponds to AND edges in the 
graph, whereas non-deterministic choice corresponds to OR edges. Edges in a control 
flow graph can be labeled with transition conditions. The condition applies to the 
current state of the workflow (which, in a broad sense, may include the current state 
of the underlying database, the output of the completed tasks, the current time, etc.). 
When the task at the tail of an edge completes, the task at the head can begin only if 
the corresponding transition condition evaluates to true. The Workflow Management 
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Coalition [ 101 identifies additional controls, such as loops and sub-workflows. 
In the following, we present some work in progress on workflow optimization, to 

be used for global optimization in multi-product generation environment. This is a 
joint work with Larry Kerschberg from GMU and Samuel Vmas from University Chile 
at Santiago, and currently visiting GMU. 

12 Workflow Representation and Scheduling 
In this section we introduce a workflow graph representation called Workflow Graphs 
(G), and we show how the workflow characteristics are represented in such graphs. 
Intuitively, Figure 1 represents a Workflow Graph. The notion of Workflow Graph is 
formalized as follows. 

Definition 1. A Workflow Graph 8 is a triple (V, E ,  W )  ", where: 

1. V = (211,. . . , v,} is the set of nodes (called events), 

2. E = {e l , .  . . ,em} is a set of edges (called activities). Each ei in E is a pair 
(T (e i ) ,  H(e i ) )  where T ( e i )  E V ,  called the tail of ei, and H(eJ  C V - {T(e i )}  
is called the head of ei, and 

9. W : E + Itk is a weight function that maps each activity ei in E to a k-tuple 
of weights (wf, . . . , w i ) .  

Note that the tail of ei (T (e i ) )  represents the incoming node of e,  and head of ei 

The Workflow Graph that corresponds to Figure 1 is as follows. N = {a, b, c, d, e,  f, g, h, i, j ,  k 
(H(e i ) )  represents the set of all outcoming nodes of ei. 

E = { ~ 1 , ~ ~ ~ 3 , ~ 4 , ~ 5 , ~ 6 , ~ 7 , ~ 8 , ~ , ~ 1 0 , ~ 1 1 , ~ 1 ~ } ,  and el is (%(b,c}), e2 is ( h { d } ) ,  e3 is 
(b ,{e}) ,  e4 is (C,{f}), e5 is (c,{g}), e6 is ( d , { h } ) ,  e7 is ( h { j } ) ,  e8 is (e ,  { j } ) ,  f% is 
(f, {i}),  e10 is (9, {k}), ell is ( j ,  { I C } ) ,  and e12 is (i, {IC}). 

We denote by O(Vi) the set of all outcoming edges of node vi, i.e., O(vi)  = {ej I 
T ( e j )  = vi}, and by I(vi)  the set of all incoming edges at node vi, i.e., I ( V j )  = {ej I 
vi E H(ej )} .  In addition, we denote by I ei I the cardinality of ei, i.e., the total 
number of incoming and outcoming nodes of ei. The size of a Workflow Graph 8, 
denoted by size(G), is defined as E, EE I ei I .  

Now, we define workflow graph paths and workflow execution plans on Workflow 
Graphs. 

Definition 2. Let (V, E ,  W )  be u Workflow Graph. Then, a path from a node s to 
a node t of length q, denoted by  P,t(q), , is a sequence of nodes and edges, (s = 

"Workflow Graphs are an extension of directed F-hypergraphs [?I. 
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Figure 7: Path on Workflow Graph 

el ,  ~ 2 , e 2 ,  - . . , Vjy  ej,Vj+l,. . . , v,, e,, vq+1 = t) ,  such that for all j ,  1 5 j 5 9, 
vj = T ( e j )  and vj+l E H(ej ) .  

As example, in Figure 2 (a ,  e l ,  c, e4, f, eg, i, e12, k) is a path from node a to node 
k. 

If t = s, P,t(q) is said to be a cycle. In a simple path all edges are distinct, 
and a simple path is elementary if all nodes V I ,  v2,. . . , v,+l are distinct. Simple and 
elementary cycles we define similarly. A path is said to be cycle-free if it does not 
contain any subpath which is a cycle. 

To execute a workflow we need to perform a set of activities with a predefine 
order. We introduce the concept of execution plan to formalize how workflow can be 
executed. 

To understand intuitively, an example of execution plan is depicted in Figure 3, 
where workflow starts at event a, then activity el is executed. After that, activities 
e2, e6, e7, and ell are executed sequentially. In parallel to that, activities e5, eg, and 
e12 are executed sequentially. More formally. 

Definition 3. Let (V, E ,  W )  be a Workflow Graph. An hyperpath, also called ezecu- 
tion plan interchangibly, from an event s to an event t ,  denoted b y  n,,, is a minimal 
Workflow Graph (Vn, En, Wn), such that: 

2. S , t E  vn G V  

3. For every v E Vn, v is connected to t in (Vn,En,Wn) by  a cyclic-free simple 
path, and 
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Figure 8: Execution Plan on Workflow Graph 

4. Wn and W ugree on En, ie . ,  for every e E En, Wn(e) = W(e). 

Figure 3 depicts an example of an execution plan from event u to event k. In 
this case Vi = {a,  b, c, d, f, G , j $ } ,  En = {el, e2, e4, e69 e7, eg, ell, e12}, and WII = 

Note that there are 4 possible workflow execution plans in the Workflow Graph 
depicted in Figure 1. In general, for larger or more complex Workflow Graphs the 
number of possible execution plans grows exponentially. Therefore, analyzing execu- 
tion plans' properties on a Workflow Graph could be a hard problem. We consider the 
following problem characterization to analyze workilow execution plans' properties. 

Let G = (V,E,W) be a Workflow Graph, and ll the set of all execution plans 
from a node v0 to a node vd on 8. we suggest associating an optimal criterion f to 
execution plans on ll, Le., f : Il+ R Also, execution plans in ll may be constrained, 
i.e., constraints C(p,) are given, pk E n. Then, we consider the following problems. 

1. Consistency: Determine if there exists an execution plan that satisfies C. 

{wl, w2, w4, w6, w7, w9, wll, w12)- 

2. Verification: 
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3. Scheduling: Find an execution plan where C holds. 

4. Scheduling Optimization: Find the best workflow execution plan between a node 
vo and a node v d ,  i.e., the optimization problem is as follows: 

In general, complexity of (1) corresponds to the number of elements in set n, which 
are in the worse case exponential in the size of 8. A possible solution strategy to (1) 
corresponds to to examines all their elements. However, there are alternative mech- 
anisms to solve (1) rather than an exhaustive enumeration. Recursive optimization 
formulations have been proposed, but in general, the problem is a NP-hard [?, ?]. 

In the following sections we analyze different cases of problem (l), and provide 
algorithms to solve effectively. 

13 Unconstrained Localizable Scheduling 
In this section we consider the case of finding a solution of (1) when there are no 
constraints other than those defined by the graph. Still the problem is NP-hard in 
general, and we first consider a special important class of objective functions, that 
we call locally computable. 

13.1 Problem Statement 
Definition 4. Let B = (V, E,  W )  be a Workflow Graph, and ll be the set of all 
hyperpaths in G. We say that a function f : n + W is a locally computable function 
if for all pair of nodes (vo, vd), such that pod E ll, f can be expressed as follows: 

where pod starts with edge e, 3 is a nondecreasing function an terms of { f ( P k d )  I vk E 
H ( e ) } ,  and fo is a real value. 

An important locally computable function corresponds to the workflow execution 
time, i.e., the necessary time to carry out the workflow. In this case, 20 represent the 
activity execution time for each ei E E,  and function F is as follows. 
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Next proposition provides a mechanism to rewrite (1) ils a recursive optimization 
problem. 
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Proposition 1. Let 4 = (V, E ,  W )  be a Workflow Graph, lld be the set of all hy- 
perpaths from v, to V d ,  and f : ll + W be a locally computable function. Then, 

1. min f ( p )  = fo 

2. min f ( p )  = min {w(e)  + F({ min f (p') I vk E H ( e ) } ) }  (3) 
P E n  

P E n  eEO(u ) dEn 

Proof. 0 

Problem (3) correspond to the generalized Bellman's equations [?, ?], and its so- 
lution is a generalization of the well-known shortest-path problem. Now, we present 
an algorithm to solve (3) in linear time. 

13.2 Shortest Execution Plan Algorithm 
The shortest execution plan algorithm [?, ?] assumes that 8 is ordered in inverse 
topological order, i.e., nodes are enumerated, such that the following condition is 
satisfied: 

The following algorithm Acyclic - I T 0  [?, ?] has as input a Workflow Graph (G), 
and its outputs are whether 9 is acyclic, and if it so, the inverse topological order. 
The algorithm is as follows 12. 

Procedure Acyclic-IT0 (8) 
for each i E V do Ti = 0 
for each e = ( { i } ,H(e) )  E E do ri = Ti+ I T ( e )  I 
k = O ; Q = 8  
for each i E V if ri = 0 then Q = Q U {i} 
while Q # 8 do 

select and remove u E Q 
k =k +l; rU = IC 
for each e E ( { i } , H ( e ) )  E I(u) do 

ri = Ti - 1 
if ri = 0 then Q = Q U  {i} 

if ( k = n )  then 

else return "WFG is not acyclic" 
return "WFG is acyclic" 

12Q is implemented as queue 
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When 4 is acyclic, then rU, for all u E E, provides the inverse topological order. 
Since each edge is examine only one, complexity of Acyclic - I T 0  correspond to 
O ( s i z e ( 8 ) )  [?I. 

Now, the algorithm to find the shortest execution plan in a Workflow Graph (8). 
The input are the destination node vd and the Workflow Graph G. The algorithm is 
as follows. 

Procedure SEP-Acyclic(vd, 9) 
for each i E V do 

Pi = 0 
if ( i = vd ) then f ( i )  = O else f ( i )  = 00 

for each ej E E do Icj = 0 
for i = 1 to I V 1-1 do 

for each ej = ( ~ , H ( e j ) )  E I ( i )  do 
kj = kj + 1 
if kj =I H ( e j )  I then 

77 = w ( e j )  + F({f(i) I i E H ( e j ) ) )  
if (f(Y) > 17) then 
f(Y) = 17 
Par = ej 

The output is a set {Pi I i E V} indicating, for each node i, which edge has 
been selected . Therefore, the execution path is constructed by a forward recursively 
enumeration, starting from the origin node of 9. 

To analyze the complexity of SEP - Acyclic() algorithm, we first note that each 
node and each edge is selected at most once. Therefore, the overall complexity is 
O ( s i z e ( 9 ) )  [?I. 

14 Constrained Localizable Scheduling 
In this section we analyze the constrained problem (1) under locally computable ob- 
jective functions assumption. In general, this is a harder problem than the uncon- 
straint one, because feasibility (constraint satisfaction) needs to be checked at each 
hyperpath. We will consider a special case of constraints called locally computable 
constraints, which are defined as follows. 
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14.1 Problem Statement 
Definition 5. Let B = (V,E,W) be a Workflow Graph, and II be the set of all 
hyperpaths to a node v d  in 8.  Let g : II + Et+ be a function and R be a positive 
real value. Then, we say that a constraint s(nk) = R - g ( I I k )  2 0, IIk E ll, is a 
locally computable constraint i f  for all IId = (Vn,En, Wn) E II, s can be expressed 
as follows: 

(5) 
s ( n d d )  = R 
s(bd) = -wZ(ej) + s ( { s ( n k d )  I vk E H ( e j ) } )  2 07 {ej}  = Ell n ~ ( V O )  

where s is a nondecreasing function in terms of { s ( n k d )  I v k  E H(ej )} .  Function s 
is called slack constraint, and 

This type of constraints can be associated with execution time (where R repre- 
sents the maximum execution time required). Other characterization correspond to 
traversal cost, rank, or distance I?, ?]. 

Finding a feasible hyperpath recursively requires to define some criteria to dis- 
criminate at each step whether an edge may belong to a feasible hyperpath. We 
suggest as a criterion the minimum feasible slack defined as follows. 
Definition 6. Let 6 = (V, E ,  W )  be a Workflow Graph, s be a slack constraint, and 
II be the set of all possible hyperpaths from a node v, to a node v d .  We say that 
(r1, rp, . . . , rn) is a n-tuple of minimum feasible slack at nodes in V ,  defined by  

minn E n { s ( n i d )  I S ( h )  2 O}, 

is the slack available at node 21,. 

if ?li E Un En Vn 
(0 otherwise. 

Ti = 

Now we can formulate (1) as a constrained recursive optimization problem as 
follows. 
Proposition 2. Let 8 = (V, E ,  W )  be a Workflow Graph, with W = (w1, wz), and n 
be the set of all hyperpaths from a node vi to a node v d .  Let f be a locally computable 
objective function, s be a slack constraint, and (7-1,. . . , T,,) be a vector of minimum 
feasible slacks. Then, the optimal feasible hyperpath l3 from a node v, to a node Vd 

problem (1) is equivalent to the following optimization problem. 

f ( n i d )  = min {wl(ej)  + F({f ( n k d )  I v k  E H ( e j ) ) )  I 
e E O ( U )  

s ( n i d )  = -"2(ej) + S ( { s ( n k d )  I vk E H ( e j ) } )  2 
V v i  E V -  (231)) (6) 

@ d d )  = R7 
f ( n d d )  = f 0 -  

13We assume that w1 is related to the objective function and w2 to the constraint 
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where 3 and S are nondecreasing functions, and fo is a constant and R is a positive 
constant. 

Proof. 0 

14.2 Constrained Execution Plan Algorithm 
The algorithm also requires a topological order of nodes, which is provide by algorithm 
Acyclic - ITO. Then, the set of all minimum feasible slack is calculated with the 
following algorithm. 

Procedure MinFeSlack(B) 
for each i E V do 

for i = I V I to 1 do 
if ( i = v, ) then ri = 0 else ri = 00 

for each k E H(e j )  I i = T ( e j )  do 
if ri + w(ej )  < r k  then 

rk = ri + w(ej )  

This algorithm examines all nodes and edges once, then, its complexity is O(size(B)). 
Finally, a modification of SEP - Acyclic algorithm provides the solution of our 

constraint problem (6). 
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Procedure SCP-Acyclic(vd, G) 
for each i E V do 

Pi = 0 
if ( i = vd ) then 

else 
j ( i )  = 0, s(i)  = R 

j ( i )  = 00, s(i)  = 0 
for each ej E E do kj = 0 
for i = 1 to I V 1-1 do 

for each ej = (y, H ( e j ) )  E I ( i )  do 
kj  = kj + 1 
if kj =I H ( e j )  I then 

71 = ~ ( e j )  + F({f (2) I i E H ( e j ) } )  
v = -wz(ej)  + S({s( i )  I i E H ( e j ) } )  
if (f(y) > 71 and v 2 q) then 

f (Y) = 77 
S(Y) = v 
Pmr = ej 

Algorithm SCP-Acyclic for each node analyzes if there going to be a enough slack 
to reach the root node. When there is no enough slack, this is an infeasible possibility, 
and then, it is not consider. Since this is just a variation of SEP - Acyclic, with 
additional evaluation (slack at each node), its complexity is O(size(B)). 

15 Additive Unconstrained Optimization 
In this section we extend the concept of locally computable function an optimization. 
We reduce problem (1) under certain condition to a network flow (integer linear) 
problem, where the solution is always integer. 

15.1 Problem Statement 
Since locally computable functions require that their values being calculated just in 
terms of local elements, many types of functions cannot satisfy this condition. For 
example, total cost, total execution time, or any function where its value depends of 
an hyperpath. To overcome this limitation, we introduce additive functions defined 
as follows. 
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Definition 7. Let B = (V,E,W) be a Workflow Graph, and ll be the set of all 
hyperpaths in G from a node zi, to the node vd. Then, we say that a function f : ll -+ W 
is a additive function iffor all lld = (Vn, En, Wn) E ll, f can be expressed as follows: 

Now, we introduce the concept of hyperflow on a Workflow Graph [?I. Intuitively, 
an hyperflow is a flow in hypergraphs, where for each node a conservation flow equa- 
tion is specified. In particular, we consider that an unit flow is introduced in node 
vo of B and a unit flow is gotten in node vd. We define the following rule when an 
edge e has I H ( e )  12 2: for each unit incoming flow at edge e the outwming flow is 
I H ( e )  I ,  i.e., additional f l o w  are created for each vi E H ( e ) .  

Although previous rule preserves the unitary of the flow, it creates an additional 
problem by the artificial flow creation. To fix that, we introduce the concept of 
h-artificial flow edge at each node as follows. 

Definition 8. Let B = (V, E,  W )  be a Workflow Graph. W e  say that edge ei is  an 
hi-artificial flow edge at node v k  if: (a) I H(ei)  (2 hi and hi 2 2, and (b) them exists 
hi different paths from ei to  vk without common elements except ei and vk. 

From Figure 1, edge el is a Gartificial edge to node I C ,  i.e., a unit flow incoming 

Now, we can define formally the concept of unit hyperflow in a Workflow Graph 
to edge el becomes in two units of flows incoming to node k.  

as follows. 

Definition 9. Let 9 = (V,E,W) be a Workflow Graph, and t9(vk) be a set of hi- 
artificial flow edges at node Vk, v k  € V .  W e  say that an unit hyperflow from v, to 
vd in 9 is a function x : E + (0) U R+ that satisfies the following conservation 
constraints: 

-D 

Note that (8) can be represented in a matricial way AZ = d, where 3c’ = (xl,. . . , z,)~, 
-. 
d = (1, 0, . . . , 0, -l)t 14, and a n x rn matrix A, called unitary incidence matrix, where 

14We consider that v, and Vd are in the first and last position of brespectively. 
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its ( i , j )  element correspond to: 

. -- 

-1, if vi E H ( e j )  
1 - h,, if e, E e(vi) 

a,j = (9) 

Io7 otherwise. 

Matrix A has two important properties, namely: (a) it is an integer matrix, i.e., 
all elements axe integer, and (b) cy==, aij = 0. Last property comes from the fact 
that for each edge e all incoming flow is balanced with the outcoming flow. Next 
proposition provides the basis for the solution of system A3 = d. 
Theorem 1. Let 6 = (V, E,  W )  be a Workflow Graph, and AZ = d be the hyperflow 
constraint conservation on 6.  If A = ( B  R) and 2 = ( 2 ~ , 2 ~ ) ,  where B is a base of 
A2 = d Then, for  every base B of AZ = Zthere exists an hyperpath II in 6 and vice 
versa. 

Proof. 0 

Now, we rewrite the optimization problem (1) for additive functions as an hyper- 
flow conservation problem, where a unit flow is sent from node v, to a node 21d. 

Proposition 3. Let 9 = (V, E,  W )  be a Workflow Graph, ll be the set of all hyper- 
paths, f : II -+ R be an additive function, and A? = d be the. unit hyperflow constraint 
conservation of 6 .  Then, 

e EE 

s.t .  A? = d 
Pro0 f. 0 

Therefore, we can use the Simplex algorithm to solve (lo), and the solution is an 
hyperpath that minimizes the objective function. Next section presents an algorithm 
to determine the unitary incidence matriz A. 

15.2 Algorithm 
The only remaining part from previous section is how matrix A is determined. The 
algorithm consists in two steps, where the first one determines an intermediate matrix 
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A' as follows. 

Then, this intermediate matrix A' is 

if vi = T ( e j )  
if vi E H(e j )  
otherwise. 

xed by adding 1-e hi - art icial edges in 
its values. This step assume that the Workflow Graph is in inverse topological order, 
and each edge e has $ a set of pairs (e, K) to indicate the ICth node in the H(e) .  This 
step is as follows. 

Procedure IncidenceMatrix(A', 8) 
for each vi E V do ICi = 0 
for each ej E E do 

$j = 0 
for q =  1 to I H(e j )  1 do 

$j = $j  U ( j ,  q) 

for each ej E Q(i) do 

a!. =a!.- t3 y I aj I 
$j = +j - aj 

for i = I V l t o  1do 

if I aj (2 2 then 

if I $j 12 2 then 
for each ek  E O(i)  do 

$k = $k U aj 

Where set Q(i)  = {e I 3(e,r)  E UuEl(v)?+bu} and set aj = { ( e , q )  I 3(e*,r) E 
k l ( v  )$U? e = e* A r # q} .  

Algorithm IncidenceMatrix(A', 8) analyzes each node once, and for each node 
calculate set Q(i)  and for element in such set calculates ai. Then, the overall com- 
plexity corresponds to the complexity of set Q(i)  times complexity of set aj times the 
number of nodes in 8, i.e., O(l V I xO(Q) x O(a)). 

16 Extended Workflow Scheduling Problem 
In this section we extend the workflow scheduling problem considering that there are 
some constraints over a subset of activities indicating if those activities may or may 
not mandatory be executed. As example of this type of constraints consider the case 
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when two activities el and e2 are simultaneously allowed or disallowed to appear in 
an feasible execution plan, i.e., the logic constraint is ( l e l  A 7e2) V (el A e2). 

16.1 Problem Statement 
In general, finding a feasible execution plan under such constraints makes the problem 
NP-hard, because there is necessary to check all combinations of allowed activities. 
Before we formulate our optimization model we need to define the notion of feasible 
instantiation as follows. 

Definition 10. Let 9 = (V, E , W )  be a Workjlow Graph, c^ be a constraint over 
activities el, .  . . , e&, and w' = ( ~ 1 , .  - . , wk) be a Boolean vector, such that oi = TRUE, 
1 5 i 2 I C ,  i f  ei must be in the execution plan, FALSE if ei must not be in the 
execution plan. Then, we say that an instantiation of G is feasible i f  it satisfies e. 

Note that there are 2k possible instantiations of w' to check whether is feasible or 
not, which is the source of the NP-hardness. 

The optimization problem can be formulated similar to (1) with the additional 
constraint erel ,  . . . , e k ) .  Then finding the best execution plan between node a vo and 
a node vd can be formulated as 

s.t. C(rI,) 

q e 1 ,  - - * 7 ek) 

In general, solving problem (12) requires exponential time. However, when a 
feasible instantiation of w' is given, problem (12) is similar to (1). This observation is 
used to propose a local search algorithm [?, ?, ?] in the next section. In the following, 
we consider that function f and constraint C satisfy the condition from sections 13, 
14, and 15. 

16.2 Local Search Algorithm 
A local search algorithm is structured as follows: a number of local searches are 
performed, where for each one, the algorithm checks i f  the local optimum is better 
than the current objective function value. This procedure is repeated until there is no 
acceptabIe neighborhood possible or some criteria are satisfied (number of iterations, 
minimum value, etc.). 

In this case acceptable neighborhoods correspond to feasible instantiations of w'. 
Therefore, we need a procedure to generate those neighborhoods. There are many . 
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possible ways to implement this procedure, (sequential, random ,etc.). However, we 
do not discuss them here, and we just consider that there is such a procedure called 
GetNext Neighbor hood () . 

The local search framework get a w' instantiation, let say Gk, and modifies B with 
that information (assigns an huge cost to the activities with FALSE). The resulting 
problem is one of the problem formulated in sections 13, 14, and 15. Therefore, we 
can use the their algorithms to solve the local search (Step 1). The local search 
framework is as follows. 

Step 0. Assign 0 to I C ,  w'k = GetNeztNeighborhood(), and f* = 00. 

Step 1. Assign wi = 00 if wi = FALSE, and perform a local search, i.e., solve the 
shortest execution plan, getting solution nk. 

Step 2. if f(nk) < f*, then f* = f(&), and n* = nk. 

Step 3. Increase k by 1, select a new w' instantiation, and go to step 2. If there is 
no w' instantiation, go to step 4. 

Step 4. Report objective function f* and solution n*. 
Local search framework complexity, in the worst case, is exponential in terms of 

k, i.e., the number of activities involved in constraint e. In particular, complexity 
is 0 ( 2 k ~  I E I xsize(B)),  since we have to execute local search algorithm (shortest 
execution path) at most Zk times. However, using some additional stop criteria, it is 
possible get good solutions without examine all possible combinations. 
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Part VI 

Conclusions and Suggested Future 
Directions 
Main Conclusions in Phase 1: 

Q 0 EOSCUBE has the potential for significant productivity gain in specification 
and generation of EOSDIS and other scientific products 

0 Generation of scientific products from real data sets is feasible using the EOSCUBE 
prototype 

0 An industrial-strength EOSCUBE implementation will be necessary for deploy- 
ment and massive use of the system. 

0 The EOSCUBE language should allow incremental extensions, which itre un- 

0 The overall evaluation model should also support data-flow processing (i.e. 

avoidable in diverse scientific domains 

pipeline evaluation), in addition to query processing. 

0 The main aspects of global optimization should deal with interleaved pipelined 
evaluation of series of inter-related products, and concentrate on optimizing 
throughput via data flow control, buffer management, and materialization sup  
porting clustering and indexing. 

3 Future Action Paths for EOSCUBE: 
We elaborate on recommended activities in Section VI. Below is a summary of main 
paths of action that will have to be carefully discussed and planned with EOSDIS. 

Research Path 0 Optimization algorithms for workflow (for data flow evalua- 
tion) 

0 Optimization for quasi-views, which dynamically control with each product 
query, when the evaluation is postponed and when is restarted 

0 Specialized techniques for spatietemporal indexing and clustering 
Optimization of materialized views, which support (especially created) in- 
termediate results to support clustering and indexing 
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0 GIS constraint algebras, which will support interoperability with GIS un- 
der unified constraint model. 

Industrial-strength implementation path 

0 Pipeline evaluation model. 
0 ODBC support, and through it, a range of object managers and DBMS. 
0 Platforms support, including mass storage system. 
0 Workflow optimization module. 
0 GIS integration. 

0 CCUBE/EOSCUBE core, focus- 
ing on performance for individual queries. 

Collaborative work with  Earth scientists on a specific set of new products, and 
continued customization of EOSCUBE for them. This will also used as a lever- 
age for later massive deployment of EOSCUBE. 

Deployment of EOSCUBE to  Centers and Support 
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I ’  Ouew 1 output: 

0.0846923 

0.35008 0.235478 0.0327797 0.0294338 0.056053 0.0490407 0.0870465 0.04343 18 0 
.O00460318 0.2558 0.321847 0.156925 0.O482OO10.159197 0.130963 0.149418 0.10525 
7 0.021373 0.0475394 -0.0249535 -0.012261 0.0866486 0.3171 12 -0.0618164 
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Grid I 
String Color; 
CST(lat,lon) extent; 
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Double NDVI; 
Double SST; 
Double CLD; 
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